題號: 414

國立臺灣大學101學年度碩士班招生考試試題

科目:近代物理學(B)

節次:

그 頁之第

※ 注意:請於試卷內之「非選擇題作答區」依序作答,並應註明作答之部份及題號。

There are three parts of this exam.

Part I: Modern Physics I (35%)

1.(10%) For the infinite barrier quantum well problem with quantum well length L (From x=0 to x=L). The electron energy will split into n states where the energy and wave function can be expressed as

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}$$
 $\psi_n(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$, $n = 1,2,3...$

Please calculate the following expectation value if the electron is in the ground state: $(1) < x > (2) < x^2 > (3) (4) < p^2 >$

2 (5%) If λ is the mean free path between the collisions of a free electron and the average time τ between collision is $\tau = \lambda/V_F$, where V_F is the Fermi velocity Calculate the resistivity ρ in terms of m, n, e, λ , and V_F . (m, n, and e are the electron mass, density, and charge, respectively.)

3. (5%) Please calculate the density of states g(E) of photons within the energy range of E and E+dE.

4. (10%) If a system has angular momentum of quantum number l=3, (1) what is the magnitude of L, and (2) what is the smallest possible angle between L and the z axis?

5 (5%) What is Rayleigh scattering?

題號: 414 國立臺灣大學101學年度碩士班招生考試試題

科目:近代物理學(B)

Part II: Modern Physics II (40%)

Please find the answer of (1) to (8), 5% each.

- 6. In a system of two particles with energies and momenta (E1, P1) and (E2, P2), respectively, the quantity, $S^2 = (E_1 + E_1)^2 - C^2(p_1 + p_2)^2$, is invariant; i.e., it has the same numerical value in all inertial frames.
- (a) Consider a center-of-mass collision of proton and an antiproton (Mc²=939.3 MeV). The minimum momentum required to produce a particle with mass Mc²=91200 MeV is (1) GeV/c.
- (b) In a fixed-target accelerator, an antiproton projectile collides with a proton target at rest. The minimum energy that the antiproton must have to create the new particle of part (a) is (2) TeV.
- 7. Assume that in a gas of H under normal conditions, the interatomic spacing is 1.6*10⁻⁸ m and the gas is made of atomic, not molecular, hydrogen. What n-value of the hydrogen atoms is the size of the atom comparable to the interatomic spacing: (3).
- 8. Compton used photons of wavelength 0.0711 nm. (a) What is the energy of these photons: (4) eV; (b) What is the wavelength of the photons scattered at e=180°: (5) nm; (c) What is the energy of the photons scattered at $\theta=180^{\circ}$: (d) eV; (d) What is the recoil energy of the electrons if e=180°: (7) eV.
- 9. An excited state of a certain nucleus has a half-life of 0.85 ns. Taking this to be the uncertainty Δt for the emission of a photon, as $\lambda=0.01$ nm, $\Delta f/f=(8)$.

Part III: Microelectronics (25%)

- 10. Choose the correct description(s) about a p-n junction diode: (a) depletion region under forward-bias is wider than that under reverse-bias, (b) diffusion current (rather than drift current) dominants under forward bias, (c) junction capacitance increases with increasing reverse-bias, (d) Higher doping concentration results in larger junction built-in voltage. (12%) (每小題各三分,答錯不倒扣)
- 11. Consider a MOSFET with $t_{ox} = 8$ nm, W = 8 μ m, L = 0.8 μ m, $\mu_n = 450$ cm²/Vs, $V_t = 0.7$ V. $\varepsilon_{\rm or} = 3.45 \times 10^{-11} \text{ F/m}$:
- (a) Find Cox. (3%)
- (b) Calculate the values of VGS and minimum VDS needed to operate the transistor in the saturation region with a dc current I_D = 100 μA. (6%)
- (c) Find the value of V_{GS} required to cause the device to operate as a 1000 Ω resistor for very small V_{DS}. (4%)