編號: 176,202

國立成功大學 109 學年度碩士班招生考試試題

所:電機工程學系、電機資訊、留院一微電、奈夫斯和

考試科目:電子學

考試日期:0210,節次:1

第1頁,共3頁

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. Consider the folded-cascode amplifier of Fig. 1 for the following case: V_{DD} =1.8 V, $\mu_p C_{ox}$ =1/4 $\mu_n C_{ox}$, and V_{tn} =- V_{tp} =0.5 V, To operate Q_1 and Q_2 at equal bias currents I, I_1 =2I and I_2 =I. While current source I_1 is implemented using the simple circuit and current source I_2 is realized using a cascoded circuit. The transistor W/L ratios are selected so that each operates at an overdrive voltage of 0.2 V. (20%)
 - (a) What must the relationship of $(W/L)_2$ to $(W/L)_1$ be? (4%)
 - (b) What is the minimum dc voltage required across current source I_1 for proper operation? If a 0.1-V peak-to-peak signal swing is to be allowed at the drain of Q_1 , what is the highest dc bias voltage that can be used at that node? (4%)
 - (c) What is the value of V_{SG} of Q₂, and hence what is the largest value to which V_{G2} can be set? (4%)
 - (d) What is the minimum dc voltage required across current-source l₂ for proper operation? (4%)
 - (e) Given the results of (c) and (d), what is the allowable range of signal swing at the output? (4%)

Fig. 1

- 2. Consider the integrated-circuit CS amplifier in Fig. 2 for the case I_{BIAS} =100 μ A, Q_2 and Q_3 are matched, and R_{sig} = 200 $k\Omega$. For Q_1 : $\mu_n C_{ox}$ =90 μ A/V², $|V_A|$ =12.8 V, W/L=100 μ m/1.0 μ m, C_{gs} =0.2 pF, C_{gd} =0.015 pF. For Q_2 : $|V_A|$ =19.2 V. Neglecting the effect of the capacitance inevitably present at the output node. (14%)
 - (a) Find the low-frequency gain (5%)
 - (b) Find the 3-dB frequency f_H (5%)
 - (c) Find the frequency of the zero f_z (4%)

Fig. 2

編號: 176、202

國立成功大學 109 學年度碩士班招生考試試題

所:電機工程學系、電機資訊傳視一微電、奈米聯根

考試科目:電子學

考試日期:0210,節次:1

第2頁,共3頁

- 3. Fig. 3 shows the feedback circuit with the case $g_{m1}=g_{m2}=2$ mA/V, $R_{sig}=200$ k Ω , $R_{D1}=R_{D2}=10$ k Ω , $R_1=1$ k Ω , and $R_2=9$ k Ω . For simplicity, neglect r_o of each of Q_1 and Q_2 . (16%)
 - (a) Find the loop gain β A (4%)
 - (b) Find the voltage gain V_o/V_s (4%)
 - (c) Find the input resistance Rin (4%)
 - (d) Find the output resistance Rout. (4%)

Fig. 3

- 4. For the Class AB output stage shown in Fig. 4, we know that Q_3 and Q_4 are the major power BJTs which deliver current to load resistance R_L . Please give your answer and brief explanation for the following questions: (15%)
 - (a) In addition to provide two V_{BE} voltage drop for biasing the Q_3 and Q_4 like the conventional diode-connected biasing circuit does, what is the major advantage of the input stage which consists of Q_1 Q_2 , R_1 and R_2 ? (5%)
 - (b) What is the major purpose of the last stage which consists of Q_5 Q_6 , R_3 and R_4 ? (5%)
 - (c) What is the major purpose of the resistors R_5 and R_6 ? (5%)

Fig. 4

/ 編號: 176,≯0≥

國立成功大學 109 學年度碩士班招生考試試題

所:電機工程學系、電機資訊學院一份電、奈米斯的招

考試科目:電子學

考試日期:0210,節次:1

第3頁,共3頁

5. Fig. 5 shows a three-stage feedback amplifier: (20%)

 A_1 has an 82-k Ω differential input resistance, a 20-V/V open-circuit differential voltage gain, and a 3.2-k Ω output resistance.

 A_2 has a 5-k Ω input resistance, a 20-mA/V short-circuit transconductance, and a 20-k Ω output resistance. A_3 has an 20-k Ω input resistance, unity open-circuit voltage gain, and a 1-k Ω output resistance.

The feedback amplifier feeds a 1-k Ω load resistance and is fed by a signal source with a 9-k Ω resistance.

- (a) If $R_1 = 20 \text{ k}\Omega$, find the value of R_2 that results in a closed-loop gain V_o/V_s that is ideally 5V/V. (4%)
- (b) Find the feedback amplifier's input resistance R_{in} . (4%)
- (c) Find the feedback amplifier's output resistance R_{out} . (4%)
- (d) If the high-frequency response if the open-loop gain A is dominated by a pole at 100Hz, what is the upper 3-dB frequency of the closed-loop gain? (4%)
- (e) If for some reason, A_1 drops to half its nominal value, what is the percentage change in the closed-loop gain A_f ? (4%)

Fig. 5

- 6. Please analysis and design an oscillator which uses a bistable circuit. (15%)
 - (a) Fig. 6. shows a square waveform generator. The positive and negative saturation levels of the op-amp used in the bistable circuit are L_+ and L_- , respectively. The trigger levels are V_+ and V_- . If $V_\pm = \beta L_\pm$, derive a relationship between the oscillator period and the time-constant $\tau = RC$. (5%)
 - (b) Follow 6(a), how to modify the circuit of Fig. 6 to generate a triangular waveform. You are allowed to use one more op amp. (5%)
 - (c) Based on the conditions of 6(a), please derive a relationship between the oscillator period and the RC for the circuit you design in 6(b). (5%)

Fig. 6