題號: 56 科目:幾何

節次:

國立臺灣大學 109 學年度碩士班招生考試試題

題號: 56

共 / 頁之第 / 頁

(1) Let $\gamma(s)$ be a smooth curve in \mathbb{R}^3 , parametrized by arc-length. Suppose the $\gamma''(s)$ is nowhere zero. Denote by $\{\mathbf{T}(s), \mathbf{N}(s), \mathbf{B}(s)\}$ the Frenet frame. Consider $F(s, u) = \gamma(s) + u\mathbf{B}(s) \in \mathbb{R}^3$.

(a) [8%] For any s_0 , show that there exists an $\varepsilon > 0$ such that the image of $(s_0 - \varepsilon, s_0 + \varepsilon) \times (-\varepsilon, \varepsilon)$ under F is a regular surface.

From now on, assume the image of F is a regular surface.

- (b) [12%] Compute its first fundamental form, and the Christoffel symbols.
- (c) [10%] Show that $\gamma(s)$ is a geodesic on the surface defined above.
- (2) [20%] If two oriented, regular surfaces, S_1 and S_2 , intersect along a regular curve C. Prove the following relation:

$$\kappa^2 \sin^2 \theta = (\lambda_1)^2 + (\lambda_2)^2 - 2\lambda_1 \lambda_2 \cos \theta$$

where

- κ is the curvature of C, as a curve in \mathbb{R}^3 ;
- λ_j is the normal curvature of C on S_j , for j = 1, 2;
- θ is the angle made up by the normal vectors of S_1 and S_2 .
- (3) [20%] Let Σ be an oriented, minimal, regular surface in \mathbb{R}^3 . Prove that the Gauss map from Σ to \mathbb{S}^2 is a conformal map (on where $K \neq 0$).
- (4) Let S be the surface $\{(u, v, \frac{1}{2}(u^2 v^2)) | (u, v) \in \mathbb{R}^2\}$.
 - (a) [10%] Compute the Gaussian curvature of S.
 - (b) [20%] Does S contain a smooth, simple closed geodesic? Give your reason. (Hint: S is diffeomorphic to \mathbb{R}^2 . Due to the Jordan curve theorem, any simple closed curve must bound a topological disk.)

試題隨卷繳回