題號: 58 國立臺灣大學 109 學年度碩士班招生考試試題

科目:線性代數(A)

節次: 4

題號: 58 共 / 頁之第 / 頁

• Unless otherwise specified, everything is over \mathbb{R} .

- The ordinary inner product of \mathbb{R}^n is denoted by $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$.
- S_n is the space of $n \times n$ square matrices.
- ullet P is the vector space of polynomials of one variable x with real coefficients.
- Dual space V^* of real vector space V is $\{\alpha \mid \alpha : V \to \mathbb{R}, \alpha \text{ is linear}\}.$
- (1) [16%] $V \subset \mathbb{R}^4$ is a subspace span by $\vec{\mathbf{u}} = \begin{bmatrix} 1 & -4 & 8 & 3 \end{bmatrix}^t$ and $\vec{\mathbf{v}} = \begin{bmatrix} 2 & -2 & 10 & 3 \end{bmatrix}^t$. Define a linear transformation $T: V \to V$ by

$$T(\vec{\mathbf{u}}) = 5\,\vec{\mathbf{u}} + 2\,\vec{\mathbf{v}}$$

$$T(\vec{\mathbf{v}}) = 7 \vec{\mathbf{u}} + \vec{\mathbf{v}}$$

The induced inner product of V from \mathbb{R}^4 is defined by $\langle \vec{\mathbf{x}}, \vec{\mathbf{y}} \rangle = \vec{\mathbf{x}} \cdot \vec{\mathbf{y}}, \vec{\mathbf{x}}, \vec{\mathbf{y}} \in V$. Is T self-adjoint with respect to $\langle \cdot, \cdot \rangle$? Demonstrate your answer.

- (2) [16%] $\mathcal{P}_3 \equiv \{f(x) \in \mathcal{P} | \deg(f(x)) \leq 3\}$. Let \mathcal{P}_3^* be the dual space of \mathcal{P}_3 . For any $a \in \mathbb{R}$, define $\widehat{a} \in \mathcal{P}_3^*$ by $\widehat{a}(f(x)) = f(a)$ and $d\widehat{a} \in \mathcal{P}_3^*$ by $d\widehat{a}(f(x)) = f'(a)$.
 - a. Find the basis $\phi_{-1}(x)$, $\phi_0(x)$, $\phi_d(x)$, $\phi_1(x)$ of \mathcal{P}_3 such that $\widehat{-1}$, $\widehat{0}$, $\widehat{d0}$, $\widehat{1}$ are their corresponding dual basis.
 - b. Define $I \in \mathcal{P}_3^*$ by $I(f(x)) = \int_{-1}^1 f(x) dx$. Find $\alpha, \beta, \gamma, \epsilon \in \mathbb{R}$ such that $I = \alpha \widehat{-1} + \beta \widehat{0} + \gamma d\widehat{0} + \epsilon \widehat{1}$
 - c. If there is $f(x) \in \mathcal{P}_3$ such that f(-1) = -2, f(0) = 2, $f'(0) = \pi$, f(1) = -6, evaluate $\int_{-1}^{1} f(x) dx$.

(3)
$$[16\%]$$
 $\Gamma = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix} \in \mathcal{S}_n$. $\mathcal{C}_n = \{X \mid X\Gamma = \Gamma X\}$ is a subspace of \mathcal{S}_n .

Determine $\dim \mathcal{C}_n$ and find a basis of \mathcal{C}_n .

- (4) [16%] $A \in \mathcal{S}_n$. Define m_{ij} to be the determinant of the submatrix formed by deleting the *i*-th row and *j*-th column of A. Define the classical adjoint matrix $\operatorname{adj} A = [(-1)^{i+j}m_{ji}]$. Suppose A is not invertible, show that rank of $\operatorname{adj} A$ is ≤ 1 . When is the rank of $\operatorname{adj} A = 1$?
- (5) [16%] If $A = [a_{ij}] \in \mathcal{S}_n$ is positive definite, show that $\det A \leq a_{11}a_{22}\cdots a_{nn}$.
- (6) [20%] $A \in \mathcal{S}_n(\mathbb{C})$. Over \mathbb{C} , show the following two statements are equivalent.
 - a. The characteristic polynomial of A is equal to minimal polynomial of A.
 - b. For any $X \in \mathcal{S}_n(\mathbb{C})$ satisfies XA = AX, X is a polynomial of A.

試題隨卷繳回