國立臺北大學 109 學年度碩士班一般入學考試試題

系(所)組別:通訊工程學系

科 目:通訊原理

第1頁 共1頁 □可 ☑不可使用計算機

1. An AM modulator has output

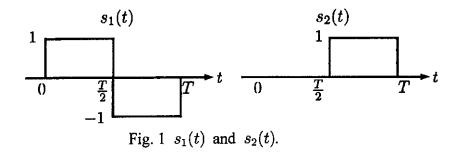
$$x_c(t) = A\cos 2\pi (200)t + B\cos 2\pi (180)t + B\cos 2\pi (220)t$$

The carrier power is 200W, and the efficiency is 20%.

- (a) (10%) Determine A and B.
- (b) (10%) Determine the modulation index.
- 2. An angle-modulated signal is described by

$$x_c(t) = 10\cos[2\pi(10^6)t + 0.1\sin(10^3)\pi t]$$

- (a) (10%) Consider $x_c(t)$ as a PM signal with its phase deviation constant $k_p = 10$. Find modulating signal m(t).
- (b) (10%) Consider $x_c(t)$ as an FM signal with its frequency deviation constant $k_f = 10\pi$. Find modulating signal m(t).
- (c) (10%) Estimate the bandwidth of $x_c(t)$.
- 3. Consider the BPSK system whose transmitted signal is given by


$$x(t) = \begin{cases} A\cos(2\pi f_c t), & m = 0, \\ -A\cos(2\pi f_c t), & m = 1, \quad 0 \le t \le T, \quad f_c >> \frac{1}{T}, \end{cases}$$

The message m has the distribution of $\mathbb{P}(m=0)=2/9$ and $\mathbb{P}(m=1)=7/9$. The received signal is given by y(t)=x(t)+n(t) where n(t) is a zero mean white Gaussian noise with power spectral density $N_0/2$ for all f.

- (a) (10%) Use coherent demodulation to demodulate the received signal and formulate the detection problem as hypothesis testing. You must derive the probability density function for each hypothesis.
- (b) (10%) Derive the detection threshold η_{ML} of maximum likelihood detection for the hypothesis testing problem derived in part a). Also, derive the detection threshold η_{MAP} of maximum a posterior detection.
- (c) (10%) Derive the average probability of error based on η_{MAP} in part b). (Hint: $Q(x) \triangleq \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^{2}}{2}} dy$ and

$$Q(-x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy.$$

- 4. Consider a baseband communication system with $s_1(t)$ and $s_2(t)$ depicted in Fig. 1.
 - (a) (7%) Determine the corresponding optimal receive filter $h^*(t)$.
 - (b) (7%) Evaluate $s_1(t) * h^*(t)$ and $s_2(t) * h^*(t)$ at t = T and compute the optimal ML detection threshold.
 - (c) (6%)Suppose now $s_1(t)$ is fixed as that in Fig. 1 but we are allowed to design $s_2(t)$. Find the optimal $s_2(t)$ such that the probability of error is minimized.

