國立臺灣科技大學 109 學年度碩士班招生試題

系所組別:資訊工程系碩士班

科 目:計算機數學

(總分為 100 分)

- 1. Given $E = Span((1,2,1)^T, (-2,-3,2)^T, (10,17,-2)^T),$
 - (a) (9%) Find an orthonormal basis of E.
 - (b) (5%) Find its orthogonal complement E^{\perp} .
- 2. Suppose that there are only three companies A, B, and C in Taiwan's mobile telecom market. Each year 20% of A's customers discontinue their packages and jump to B, 20% jump to C, and the other 60% remain. For company B, 10% of customers jump to A, 20% jump to C, and the others remain. For company C, 20% of customers jump to A, 10% jump to B, and the remaining customers stay in C.
 - (a) (12%) Write down the transition matrix A and calculate its eigenvalues λ .
 - (b) (6%) Assume that the initial market share vector of A, B, and C is $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, what is the limit $A^k \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ as $k \to \infty$?
- 3. Let $B = \{3 + 2x + x^2, -x + 2x^2, 1 + x^2\}$, $T : \mathbf{P}_3 \mapsto \mathbf{P}_3$ be the transformation T(p(x)) = 2p(x) p'(x).
 - (a) (6%) Use 2 different approaches to show that B is a basis for P_3 , the vector space of all polynomials of degree less than 3.
 - (b) (4%) Calculate $[1]_B$.
 - (c) (8%) Write down the matrix T with respect to the basis B.
- 4. (15%) Solve the system of congruences $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{10}$, $x \equiv 8 \pmod{15}$, and $x \equiv 11 \pmod{21}$.
- 5. (10%) Consider the seating arrangements of five men m_1, m_2, m_3, m_4 , and m_5 , and five women w_1, w_2, w_3, w_4 , and w_5 at a round table, where two seating arrangements are considered the same if one of them can be derived from the other by a rotation. What is the probability that m_1 and w_1 sit next to each other, while there are exactly two people sitting between m_2 and m_2 ?
- 6. (10%) Prove that if G is an undirected graph with five vertices and every vertex of G has degree 2, then G must be a cycle.
- 7. (15%) A space probe communicates with Earth using bit strings. Suppose in its transmissions the probe sends a 1 one-fourth of the time and a 0 three-fourths of the time. Also, when a 0 is sent to Earth, the probability that a 0 is received is 0.9, and the probability that a 1 is received is 0.1. When a 1 is sent to Earth, the probability that a 1 is received is 0.8, and the probability that a 0 is received is 0.2. Suppose that every bit is processed independently during transmission at either end of the communication, what is the probability that the received bit string "101" is correct?

