1090202

國立臺北科技大學109學年度碩士班招生考試

系所組別:2401 光電工程系碩士班

電子學 試題 (選考)

第1頁 共2頁

注意事項:

- 1. 本試題共六題,共 100 分。
- 2. 不必抄題,作答時請將試題題號及答案依照順序寫在答案卷上。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分
- 1. (14%) Please answer the following questions.
- (1) What are the differences between intrinsic silicon and extrinsic silicon? (3%)
- What are the differences between the enhancement-type MOSFET and the depletion-type MOSFET from the channel perspective? (3%)
- What is the channel length modulation effect? (3%)
- What are the four basic feedback topologies? (5%)
- 2. (10%) For the circuit shown in Fig. 2, please find:
- (1) the expression v_o as a function of v_I and v_2 . (2%)
- (2) the input resistance seen by v_I alone. (2%)
- (3) the input resistance seen by v_2 alone. (2%)
- (4) the input resistance seen by a source connected between the two input terminals. (2%)
- the input resistance seen by a source connected to both input terminals simultaneously. (2%)

Fig. 2

3. (16%) A transistor amplifier has an input terminal connected to a signal source with an open-circuit voltage of 10mV and an internal resistance of 100k Ω . The voltage v_i at the amplifier input and the output voltage v_o are measured both without and with a load resistance $10k\Omega$ connected to the amplifier output. When the load resistance is not connected, the measured results are v_i =9 mV and $v_o = 90$ mV. When the load resistance is connected, the measured results are v = 8 mV and $v_o = 70$ mV. Find the following amplifier parameters: open-circuit voltage gain $(A_{vo})(1\%)$, open-circuit overall voltage gain $(G_{\nu o})(1\%)$, voltage gain $(A_{\nu})(1\%)$, overall voltage gain $(G_{\nu})(1\%)$, input resistance $(R_{in})(3\%)$, input resistance with no load $(R_i)(3\%)$, output resistance $(R_{out})(3\%)$, output resistance of amplifier proper $(R_o)(3\%)$.

- 4. (20%) The wideband common-source amplifier circuit with a source resistance R_s is shown in Fig. 4. Its input terminal is fed by a signal source with an open-circuit voltage of V_{sig} and an internal resistance of R_{sig} . Its output terminal is connected to a load resistance R_L and a load capacitance C_L .
- (1) Find the transconductance G_m (4%) and the output resistance R_o . (4%)
- (2) Find the resistance R_{gd} seen by C_{gd} (4%), the resistance R_{gs} seen by C_{gs} (4%), the resistance R_{CL} seen by $C_L(2\%)$.
- (3) Find the 3dB frequency (2%).

Fig. 4

5. (20%) For the feedback amplifier shown in Fig. 5, the transistors have β =100 and the dc component of V_S is zero. Find the value of A (6%), β (2%), A_f (4%), R_{in} (4%), R_{out} (4%).

注意:背面尚有試題

第2頁 共2頁

- 6. (20%) Fig. 6 shows a bipolar op-amp circuit.(1) Perform an approximate dc analysis to calculate the dc currents and voltages everywhere in the circuit. (5%)
- (2) Calculate the quiescent power dissipation in this circuit. (3%)
 (3) Plot the equivalent circuits of each stage (4%) and find the gains of each stage (8%)

