

系所:化材系

(5%)

科目:單元操作與輸送現象

1. (a) What are the limitations of Bernoulli's equation?

(b) What is NPSH (Net Positive Suction Head)? (4%)

- (c) What is the Hagen-Poiseulle equation? How do you use the Hagen-Poiseulle equation to measure viscosity of a fluid? (6%)
- 2. There is a tank, 1 meter in diameter and 3 meters high, filled with water. Water is now drained out through the small hole at the bottom of the tank. The diameter of the small hole is 4 cm. The relationship between the average flow velocity u_o of water flowing through the small holes and the height of the water surface in the tank is $u_o = 0.62\sqrt{2gz}$.
 - (a) Assume that the density of water is 1000 kg/m^3 . How long will it take to release 1 m³ of water? (10%)
 - (b) If the water in the tank is changed to kerosene, the density of kerosene is assumed to be 800 kg/m^3 . If other conditions remain the same, how long will it take to release 2 m^3 of kerosene? (5%)
- 3. Water at 68 °F (ρ = 62.4 lb_m/ft³, μ =1 0.76× 10⁻³ lb_m/ft-s) is flowing through a 3 inches inside diameter smooth pipe of 200 feet, at a mean velocity of 4 ft/s.

The friction factor is following the expression: $f = \frac{0.0791}{Re^{0.25}}$. If the outlet of the pipe is 5 feet higher than the inlet, determine the power required to obtain this flow rate. (20%)

國立雲林科技大學 109 學年度 碩士班招生考試試顯

系所:化材系

科目:單元操作與輸送現象

4 · Please explain the following terms:

(a)Thermally fully developed conditions	(3%)
(b)Forced convection	(3%)
(c)Peclet number	(3%)
(d)Prandtl number	(3%)
(e)Fick's law of diffusion	(3%)

- 5 . The temperature distribution across a plane wall of $\,$ 0.25m thick at a certain instant of time is T(x)=190- $160x+30x^2$ where T is in degree Celsius and x is in meters . The wall has a thermal conductivity of 1.2 W/(m . K) .
 - (a)On a unit surface area basis, estimate the rate of change stored by the wall. (7%)
 - (b)If the cold surface is exposed to a fluid at 120 $^{\circ}\text{C}$, What is the convection coefficient ~?~(8%)
- 6 · Hot air flows with a mass rate 0.05 kg/s through an uninsulated sheet metal duct of diameter D=0.15m, which is in the crawl space of a house . The hot air enters at 376 K and , after a distance of L=5m, cools to 350K . The heat transfer coefficient between the duct outer surface and the ambient air at $T_{\infty}=273$ K is known to be $h_0=6W/(m^2.K)$
 - (a)Please calculate the heat loss from the duct over the length L=5m (10%)
 - (b)Determine the heat flux and duct surface temperature at L=5m (10%)

(Given : $1.air(T_m = 363K)$: $C_p = 1010 \text{ J/(kg. K)}$; $air(T_m = 350K)$: k = 0.03W/(m. K)

K), $\mu = 2.08 \times 10^{-5} \,\text{N.s/m}^2$, Pr = 0.7; 2. $Nu_D = 0.023 \,\text{Rep}^{4/5} \,\text{Pr}^n$ for turbulent flow in circular tube and n=3 for cooling, n=4 for heating.)