國立臺灣師範大學 109 學年度碩士班招生考試試題

科目:機率與統計 適用系所:數學系

注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

1. (30%) Suppose that X is a geometric random variable with distribution given by

$$P(X = k) = \theta^{k-1}(1 - \theta), \ 0 < \theta < 1, \ k = 1, 2, 3, \dots, \infty$$
.

Now consider a new random variable Y, where r is a positive integer and

$$Y = \begin{cases} X, & \text{if } X \le r; \\ r+1, & \text{if } X \ge r+1. \end{cases}$$

- (a) Show that the distribution of Y is given by $P(Y=k)=\theta^{k-1}(1-\theta), k=1,2,\ldots,r;$ $P(Y=r+1)=\theta^r.$
- (b) Find the expectation of Y, i.e., E[Y].
- (c) Suppose that Y_1, Y_2, \ldots, Y_n are a random sample of size n from the distribution of Y given in (a). Show that the maximum likelihood estimator (MLE) of θ is given by $\widehat{\theta} = \frac{\sum_{i=1}^{n} Y_i n}{\sum_{i=1}^{n} Y_i M}$, where M is the number of indices i such that $Y_i = r + 1$.
- 2. $(20 \, \hat{\pi})$ An epidemiologist is interested in determining whether or not the rate λ_1 of development of new disease cases in Community 1 is different from the rate λ_2 in Community 2. Suppose that Y_i (i=1,2) is a random variable denoting the number of disease cases developing in Community i during the year 2019, and that P_i represents the corresponding mid-year population as determined from census information. (You may assume that P_1 and P_2 are known constants.) The epidemiology is willing to assume that $Y_1 \sim \text{Poisson}(P_1\lambda_1)$ and $Y_2 \sim \text{Poisson}(P_2\theta\lambda_1)$, where the rate ratio $\theta = \lambda_2/\lambda_1$. Also, Y_1 and Y_2 are assumed to be independent random variables.
 - (a) Develop an appropriate likelihood ratio test statistic for testing $H_0: \theta = 1$ versus $H_1: \theta \neq 1$.
 - (b) Suppose that this epidemiologist obtains the following data: $Y_1 = 100$, $Y_2 = 200$, $P_1 = 2 \times 10^5$, and $P_2 = 10^5$. Using the likelihood ratio statistic derived in (a), show that these data strongly favor rejection of $H_0: \theta = 1$.
- 3. (30 $\hat{\pi}$) In a certain genetic experiment, the observed frequencies in the four distinct genotype classes AB, Ab, aB and ab were found to be n_1, n_2, n_3 and n_4 , respectively, where $N = (n_1 + n_2 + n_3 + n_4)$. Based on a certain genetic theory, the corresponding expected proportions are $(2 + \theta)/4$, $(1 \theta)/4$, $(1 \theta)/4$ and $\theta/4$, respectively, where θ is an unknown parameter.
 - (a) Derive an explicit expression for the large-sample variance $Var(\widehat{\theta})$, where $\widehat{\theta}$ is the maximum likelihood estimator (MLE) of θ .
 - (b) Consider an alternative estimator $\widehat{\theta}^*$, where $\widehat{\theta}^* = (n_1 n_2 n_3 + 5n_4)/2N$. Prove that $\widehat{\theta}^*$ is an unbiased estimator for θ .
 - (c) Derive an explicit expression for the exact variance, $Var(\widehat{\theta}^*)$ and for the efficiency, $Var(\widehat{\theta})/Var(\widehat{\theta}^*)$.

國立臺灣師範大學 109 學年度碩士班招生考試試題

- 4. (20%) Let X_1, X_2, \ldots, X_n be n independent and identically distributed continuous random variables with the probability density function (pdf) f(x) and distribution function F(x). Let $Z_{n:1} \leq \ldots \leq Z_{n:n}$ be the order statistics corresponding to X_1, \ldots, X_n .
 - (a) For an arbitrary k $(1 \le k \le n-1)$, write down the joint pdf of $Z_{n:1}, \ldots, Z_{n:k+1}$.
 - (b) Hence, or otherwise, obtain the conditional pdf of $Z_{n:k+1}$, given $Z_{n:1}, \ldots, Z_{n:k}$.
 - (c) Show that the answer to (b) depends on $Z_{n:1}, \ldots, Z_{n:k}$ only through $Z_{n:k}$.