國立高雄大學 109 學年度研究所碩士班招生考試試題

系所:應用數學系

科目:線性代數 身份別:一般生應用數學組、在

考試時間:100分鐘 職生應用數學組

是否使用計算機:否

本科原始成績:100分

Notation.

 I_n : the identity matrix of size n.

 $M_{n\times m}(\mathbb{R})$: the set of $n\times m$ real matrices.

1 (32%) Let $A, B \in M_{n \times n}(\mathbb{R})$. Determine "true" or "false" for the following statements. If "true", prove it; if "false", give a counterexample.

a If rank(AB) = rank(A), then B is invertible.

b If A is similar to B, then A and B have the same characteristic polynomial.

c If $A^3 + 3A^2 + 3A + I = 0$, then A is invertible.

d If A is symmetric, then all eigenvalues of A are real.

2 Let W_1 and W_2 be the subspaces of a vector space V.

a. (10%) Show that $W_1 \cap W_2$ is a subspace of V.

b. (5%) Find $W_1 \cap W_2$, where $W_1 = \text{span}\{(1,2,3)^\top, (-1,2,1)^\top\}$ and $W_2 = \text{span}\{(1,-1,0)^\top, (2,-1,1)^\top\}.$

3 (10%) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation and

$$T(e_1) = [0, 1, 2]^{\top}, \ T(e_2) = [1, 0, 2]^{\top}, \ T(e_3) = [2, 1, -3]^{\top},$$

where $\{e_1, e_2, e_3\}$ is the standard ordered basis for \mathbb{R}^3 . Let

$$\beta = \{[1, 1, 1]^{\top}, [0, 1, 1]^{\top}, [0, 0, 1]^{\top}\}$$

be an ordered basis for \mathbb{R}^3 . Find $[T]_{\beta}$.

4 Let

$$A = \left[\begin{array}{rrr} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{array} \right].$$

- **a.** (10%) Find an invertible matrix Q such that $Q^{-1}AQ$ is a diagonal matrix.
- **b.** (5%) Describe the set $W = \{p(x)|p(x) \text{ is a polynomial and } p(A) = 0\}.$
- 5 (10%) Let $A \in M_{n \times m}(\mathbb{R})$ with rank(A) = m. Show that $A^{\top}A$ is invertible.
- 6 Suppose that the characteristic polynomial of $A \in M_{6\times 6}(\mathbb{R})$ is $(3-t)^4(2-t)^2$.
 - **a.** (10%) Find all possible Jordan canonical forms of A.
 - **b.** (8%) If rank(A 3I) = 4 and rank(A 2I) = 4, what are the possible Jordan canonical forms of A?