國立中正大學109學年度碩士班招生考試

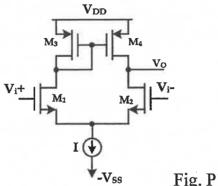
試 題

[第2節]

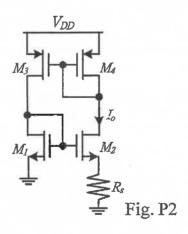
科目名稱	電子學	
A		電磁晶片組
系所組別	電機工程學系-	計算機工程組
		晶片系統組

一作答注意事項—

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。


國立中正大學 109 學年度碩士班招生考試試題

科目名稱:電子學

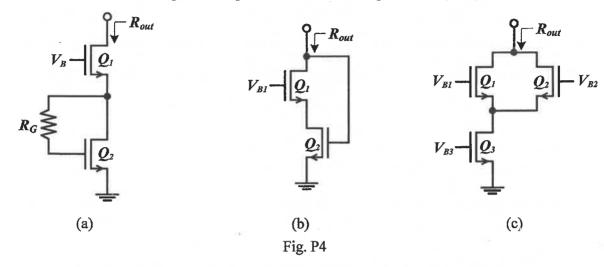

本科目共3頁第1頁

系所組別:電機工程學系-電磁晶片組、計算機工程組、晶片系統組

1. Find the voltage gain of the differential amplifier circuit in Fig. P1 under the condition that $I = 50\mu A$, $|V_{tp}|$ $V_{SS} = 2.5 \text{V}. (15\%)$

- 2.(a) Calculate the output current I_o in Fig. P2. $R_s = 3.6k\Omega$. Assume that $|V_{tp}| = V_{tn} = 1V$, $W_1 = W_3 = W_4 = 1$ $12\mu m$, $W_2 = 48 \mu m$, $L_1 = L_2 = L_4 = L_4 = 0.6 \mu m$, $\mu_n C_{ox} = 100 \mu A/V^2$, $\mu_p C_{ox} = 40 \mu A/V^2$, $\lambda_P = \lambda_N = 0$, and $V_{DD} = 3V. (10\%)$
 - (b) If $\lambda_P = \lambda_N = 0.1 \text{ V}^{-1}$, estimate the change in I_0 for a small change ΔV_{DD} in the supply voltage. (10%)

- 3. A sinusoidal signal $V_{in}(t) = A_m \cos(2\pi f_{in}t)$ is to be converted to a 12-bit digital signal, where $A_m = 2$ V and $f_{in} = 1 \text{kHz}.$
 - (a) The signal is sampled at t = 0.5 mS. What is the digital representation of the sampled signal? (5%)
 - (b) The signal is sampled at t = 0.75 mS. What is the digital representation of the sampled signal? (5%)
 - (c) What is the error introduced by the quantization in (b)? Express the error in the percentage of the full scale voltage.(5%)


國立中正大學 109 學年度碩士班招生考試試題

科目名稱:電子學

本科目共3頁第2頁

系所組別:電機工程學系-電磁晶片組、計算機工程組、晶片系統組

4. Please calculate the output resistance (R_{out}) of the circuits shown in Fig. P4. Assume that all of transistors have the same transconductance g_m and output resistance r_o while $g_m r_o >> 1$. (15%)

5. A MOS cascade amplifier shown in Fig. P5 was designed to have an input pole of 4 GHz and an output pole of 12 GHz. Assume that Q_1 and Q_2 are perfectly matched and operate in saturation region with an overdrive voltage of 0.2 V, and the process parameters are: L= 0.18 μ m, λ = 0, μ nCox = 100 μ A/V², Cox = 12 fF/ μ m², C_{GS} = (2/3)WLCox, C_{GD} = WCo, Co = 0.2 fF/ μ m. Please determine the values of R_G and R_D. (Hint: use Miller's approximation for calculating input capacitance of Q₁.) (15%)

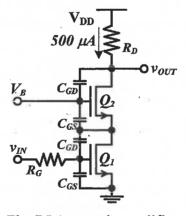


Fig. P5 A cascode amplifier

6. In the circuit of Fig. P6, assume that the reverse saturation current is 5×10^{-17} A for each diode and the thermal voltage is 25 mV, please calculate V_R . (10%)

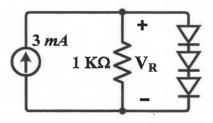


Fig. P6 Diode Circuit

國立中正大學 109 學年度碩士班招生考試試題

科目名稱:電子學

本科目共3頁第3頁

系所組別:電機工程學系-電磁晶片組、計算機工程組、晶片系統組

7. In the CMOS Inverter shown in Fig. P7, please determine the voltage of trip point. Assume that $\mu_n C_{ox} = 150 \ \mu\text{A/V}^2$, $\mu_p C_{ox} = 75 \ \mu\text{A/V}^2$, $V_{THN} = |V_{THP}| = 0.5 \ V$, and $\lambda_N = \lambda_P = 0$. (Hint: both transistors will operate in saturation region at the trip point) (10%)

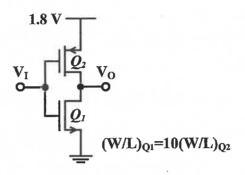


Fig. P7 A CMOS Inverter