國立中正大學 109 學年度碩士班招生考試

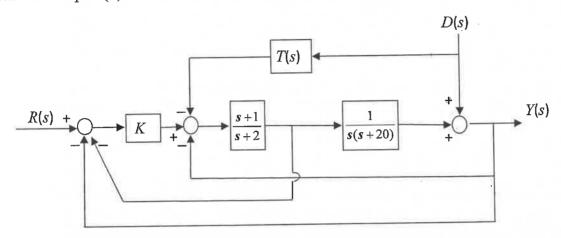
試 題

[第1節]

科目名稱	控制系統	*
系所組別	電機工程學系-電力與電能處理甲組	

-作答注意事項-

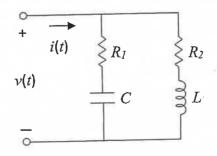
- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。


國立中正大學 109 學年度碩士班招生考試試題

科目名稱:控制系統

本科目共 1 頁 第 1 頁

系所組別:電機工程學系-電力與電能處理甲組


- 1. (30%) The block diagram of a feedback control system is shown in the figure.
- (a) Derive the following transfer functions: $\frac{Y(s)}{R(s)}|_{D=0} = \frac{Y(s)}{D(s)}|_{R=0}$.
- (b) Find T(s) such that the output Y(s) is totally independent of D(s).
- (c) Find the value of K so that the steady-state error is zero when the input is $r(t) = u_s(t)$ and T(s) is as determined in part (b).

2. (50%) The characteristic equation of a unity-feedback control system is given in the following equation:

$$s^3 + 6s^2 + 5s + K = 0$$

- (a) Using the Routh-Hurwitz criterion, determine how many roots of the characteristic equation are to the left of the line s = -1 in the s-plane for K = 10.
- (b) Find the value of K that makes the relative damping ratio of the closed-loop system (measured by the dominant complex characteristic equation roots) equal to 0.707.
- (c) Apply the Nyquist criterion to determine the values of K for system stability.
- (d) Find the value of K so that the gain margin of the system is 40 dB.
- (e) Design a phase-lag compensator such that the steady-state error to unit ramp input is less than 5 % and the phase margin is greater than 70°.
- 3 (20%) Figure shows a circuit where the v(t) is an input, the voltage of the R_2 is output, and the capacitor voltage and the inductor current are the state variables.
 - (a) Write the dynamic equations (state equations and output equations) and the characteristic equation.
 - (b) Determine the conditions that the system is controllable and observable.

