編號: 119

國立成功大學 109 學年度碩士班招生考試試題

系 所:工程科學系 考試科目:通信系統

考試日期:0211,節次:1

第1頁,共2頁

- ※ 考生請注意:本試題不可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
 - 1) (20 marks, 5 marks each) With the help of the four given signal waveforms as shown in Fig. 1, plot the following signal waveforms:

a)
$$x_1(t) = \Pi(2t+5)$$
.

b)
$$x_2(t) = \sum_{n=0}^{\infty} \Lambda(t-n)$$
.

c)
$$x_3(t) = \text{sgn}(2t) - \text{sgn}(t)$$
.

d)
$$x_4(t) = \text{sinc}(10t)$$
.

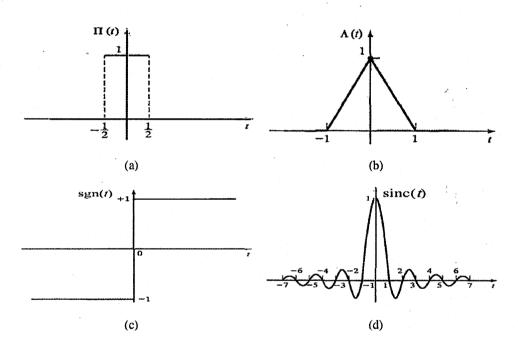


Fig. 1. The four given signal waveforms: $\Pi(t)$, $\Lambda(t)$, $\mathrm{sgn}(t)$, and $\mathrm{sinc}(t)$.

- 2) (20 marks, 5 marks each) The message signal $m(t) = 2\cos 400t + 4\sin(500t + \pi/3)$ modulates the carrier signal $c(t) = A\cos(8000\pi t)$, using DSB amplitude modulation.
 - a) Find the time-domain representations of the modulated signal.
 - b) Find the frequency-domain representations of the modulated signal.
 - c) Plot the spectrum (i.e., the Fourier transform) of the modulated signal.
 - d) What is the power content of the modulated signal?

編號: 119

國立成功大學 109 學年度碩士班招生考試試題

系 所:工程科學系 考試科目:通信系統

考試日期:0211,節次:1

第2頁,共2頁

- 3) (30 marks, 5 marks each) The message signal m(t), whose spectrum is shown in Fig. 2, is passed through the system shown in that figure. The bandpass filter has a bandwidth of 2W centered at f_0 , and the lowpass filter has a bandwidth of W.
 - a) Plot the spectrum of the signal x(t).
 - b) Plot the spectrum of the signal $y_1(t)$.
 - c) Plot the spectrum of the signal $y_2(t)$.
 - d) Plot the spectrum of the signal $y_3(t)$.
 - e) Plot the spectrum of the signal $y_4(t)$.
 - f) What are the bandwidths of the signals?

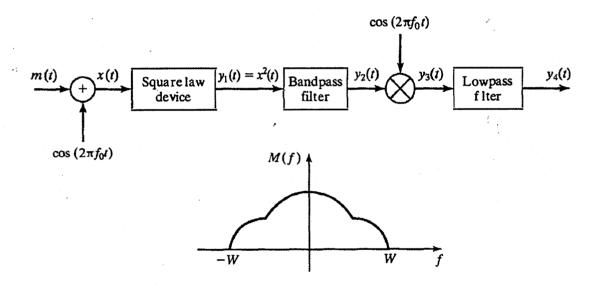


Fig. 2. Problem 3.

- 4) (30 marks) The message signal $m(t)=10\,\sin(400t)$ frequency modulates the carrier $c(t)=100\cos2\pi f_c t$. The modulation index β_f is 6, where we have $\beta_f=\frac{k_f\max[|m(t)|]}{W}$.
 - a) (7 marks) Write an expression for the modulated signal u(t).
 - b) (7 marks) What is the maximum frequency deviation of the modulated signal?
 - c) (7 marks) What is the power content of the modulated signal?
 - d) (9 marks) Find the bandwidth of the modulated signal.