編號: 80

國立成功大學 109 學年度碩士班招生考試試題

系 所:化學工程學系

考試科目:物理化學

考試日期:0210, 節次:3

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. A diatomic ideal gas is at 300 K and 1 bar initially. Calculate w, ΔH , ΔS , and ΔG after adiabatic free expansion until the volume is doubled. (16%)
- 2. A cell Cu(s) | CuCl₂(0.01 mol kg⁻¹) | AgCl(s) |Ag is constructed. It is known that the standard electrode potentials of Cu and AgCl at 298K are as follows:

$$Cu^{2+} + 2e^- \rightarrow Cu(s)$$

$$E^{\circ} = 0.3419 V$$

$$AgCl(s) + e^{-} \rightarrow Ag(s) + Cl^{-}$$

$$E^{\circ} = 0.22233 V$$

(a) Write the cell reaction (3%) and give the standard electromotive force (E°) (3%); (b) Estimate the mean ionic activity coefficient of Cu^{2+} and Cl^{-} ions using Debye-Hückel limiting law (4%) (c) Calculate the electromotive force (E) (4%) and the reaction Gibbs energy (ΔG) (3%) of the cell.

(17%)

3. Derive the following relationships:

(a) Prove that
$$\left(\frac{\partial C_{\nu}}{\partial V}\right)_{T} = T \left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{V}$$
 (8%); (b) $\left(\frac{\partial S}{\partial V}\right)_{U} = \frac{P}{T}$ (8%)

(b)
$$\left(\frac{\partial S}{\partial V}\right)_U = \frac{P}{T}$$
 (8%)

(16%)

4. Suppose that a reaction of stoichiometry A + 2B = 2Y + 2Z is believed to occur according to the mechanism

$$A \xrightarrow{k_1} 2X$$

$$X + B \xrightarrow{k_2} Y + Z$$

- (a) If the first step reaches the equilibrium very rapidly as compared to the second step, derive the expression for the rate of formation of the product Y. (8%)
- (b) Derive the expression for the activation energy (E_a) of the above rate expression in terms of E_1, E_{-1}, E_2 , which denote the activation energies for the rate constants k_1, k_{-1}, k_2 , respectively. (8%)

(16%)

5. The equation of state for a van der Waals gas is $(P + \frac{a}{V^2})(V_m - b) = RT$,

(a) prove that $a = 3P_cV_c^2$ and $b = \frac{V_c}{3}$, in which P_c , V_c , T_c are the critical P, V, T, respectively. (8%);

(b) derive the reduced equation of state and describe the law of correspondence state (8%).

<u>(16%)</u>

6. Answer the following questions:

(19%)

(a) Determine the number of degrees of freedom and suggest the required variables for an aqueous solution

編號: 80

國立成功大學 109 學年度碩士班招生考試試題

系 所:化學工程學系

考試科目:物理化學

考試日期:0210,節次:3

第2頁,共2頁

of potassium chloride and sodium chloride at 1 atm. (4%)

- (b) The combustion of $C_2H_5OH_{(l)}$ in a bomb calorimeter produces about 1364 $kJ mol^{-1}$ at 25°C. Calculate ΔH_m for the combustion reaction at 25°C: $C_2H_5OH_{(l)}+3O_{2(g)}=2CO_{2(g)}+3H_2O_{(l)}$ (4%)
- (c) Suppose that a refrigerator cools to 250 K and discharges heat at 300 K. If the refrigerator operates with an efficiency of the 25% of the maximum theoretical coefficient of performance (COP), how much work would be required to freeze 18 kg of water ($\Delta_f H \approx -6.0 k Jmol^{-1}$) (4%)
- (d) The molar conductivities at infinite dilution (Λ°) of KCl, KI, and NaCl are 149.79, 150.31, and 126.39 $Scm^{2}mol^{-1}$. Calculate the Λ° of NaI. (4%)
- (e) The main difference between Langmuir adsorption isotherm and BET adsorption isotherm. (3%)

---- END ----