編號: 78

國立成功大學 109 學年度碩士班招生考試試題

系 所: 化學工程學系 考試科目: 化學反應工程

考試日期:0210, 節次:3

第1頁,共3頁

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. An elementary and liquid-phase reaction, $2A \rightarrow B$, with rate constant of k = 0.05 liter/mol/min at 300 K is carried out isothermally in a reactor system consists of a 500-liter plug flow reactor (PFR) and a 500-liter continuous-stirred tank reactor (CSTR). The entrance stream is a solution of A with molar flow rate (F_{A0}) of 10 mol/min and concentration (C_{A0}) of 1 M.
 - (a) Please estimate exit conversion of A if the two reactors are connected in parallel and the entrance stream is distributed equally. (8%)
 - (b) Please estimate exit conversion of A if the two reactors are connected in series with PFR followed by CSTR. (8%)
 - (c) Please estimate exit conversion of A if the two reactors are connected in series with PFR preceded by CSTR. (8%)
 - (d) Please compare results in (b) and (c) and comment on the differences. (3%)
- 2. For a second-order reaction, please comment on the following facts based on the Levenspiel plot $[(F_{A0}/-r_A) \text{ vs. } x_A]$. (6%)
 - (a) The required reactor volume to achieve certain conversion for CSTR is larger than that for PFR. (3%)
 - (b) A PFR can be approximated by infinite CSTRs in series with the same total volume. (3%)
- 3. An enzyme (E) is known to promote hydrogen peroxide decomposition into water and oxygen. The concentration of hydrogen peroxide is given as a function of time for a reaction mixture with a pH value of 6.7 and at 30 $^{\circ}$ C as below. Please determine the Michaelis-Menten parameters V_{max} and K_{M} . (16%)

time (min)	0	10	20	50	100
Concentration	0.02	0.01775	0.0158	0.0106	0.005
of H ₂ O ₂ (M)		·			

4. The first-order irreversible liquid phase reaction (A = > B) is performed in a jacketed CSTR. Pure A is fed to the reactor at a rate of 0.5 g mol/min. The heat-generation curve for this reaction and reactor system is shown in Figure 1:

$$G(T) = \frac{-\Delta H_{RX}^o}{1 + 1/(\tau k)}$$

- (a) To what inlet temperature must the fluid be preheated for the reactor to operate at a conversion of 95%? (9%)
- (b) What is the corresponding temperature of the fluid in the CSTR at this inlet temperature? (9%) Additional information: heat of reaction (constant) = -100 cal/g mol A; heat capacities of A and B are both equal to 2 cal/g mol/ $^{\circ}$ C; UA = 1 cal/min/ $^{\circ}$ C, ambient temperature (T_a) = 100 $^{\circ}$ C.

編號: 78

國立成功大學 109 學年度碩士班招生考試試題

系 所: 化學工程學系 考試科目: 化學反應工程

考試日期:0210, 節次:3

第2頁,共3頁

Figure 1. G(T) curve

5. Vanadium triisopropoxide (VTIPO) was used to grow vanadium oxide films by chemical vapor deposition. The deposition rate as a function of VTIPO pressure for two different temperatures follows: at T = 120 °C

Growth Rate	0.004	0.015	0.025	0.04	0.068	0.08	0.095	0.1
(µm/h)								
VTIPO	0.1	0.2	0.3	0.5	0.8	1.0	1.5	2.0
Pressure (torr)								

at T = 200 °C					
Growth Rate	0.028	0.45	1.8	2.8	7.2
(µm/h)					
VTIPO	0.05	0.2	0.4	0.5	0.8
Pressure (torr)					

- a) Please analyze the data and suggest a rate law consistent with the data. (9%)
- b) Please calculate the activation energy, E (cal/mol). (6%)

編號: 78

國立成功大學 109 學年度碩士班招生考試試題

系 所: 化學工程學系 考試科目: 化學反應工程

考試日期:0210,節次:3

第3頁,共3頁

6. What are the definitions of internal effectiveness factor (η) and overall effectiveness factor (Ω)? (6%) Please derive the " Ω " for a first-order reaction in packed beds is: (12%)

$$\Omega = \frac{\eta}{1 + \eta k_1'' S_a \rho_b / k_c a_c}$$

Figure 2. Mass transfer and reaction steps. Both internal and external diffusion are important.