編號: 161

國立成功大學 109 學年度碩士班招生考試試題

系 所:生物醫學工程學系

考試科目:電子學

第1頁,共2頁

考試日期:0210,節次:2

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. (10%) Please explain the following terminologies: a) diode, b) BJT, c) MOSFET, d) CMOS, e) signal ground.
- 2. (15%) Figure 1 shows a folded-cascode CMOS operational amplifier, please derive the differential gain of the circuit.

Figure 1 Circuit of a folded-cascode CMOS operational amplifier

- 3. (15%) Please draw the circuit of the Wilson bipolar current mirror and derive the relationship between reference current (I_{REF}) and output current (I_O).
- 4. (10%) Please draw the physical structure of a *npn* BJT and a *N*-channel MOSFET.
- 5. (10%) Transcranial direct current stimulation (tDCS) is a useful treatment in rehabilitation, one of important characteristics of tDCS is to provide a tunable constant current source, please explain how to make a tunable constant current source based on the knowledge you learned in microelectronics.
- 6. (20%) Transistor Q_1 in the circuit of Figure 2 is operating as a CE amplifier with an active load provided by transistor Q_2 which is the output transistor in a current mirror formed by Q_2 and Q_3 (Note that the biasing arrangement for Q_1 is not shown.)
 - (a) Neglecting the finite base currents of Q_2 and Q_3 and assuming that their $V_{BE} \cong 0.7V$ and that Q_2 has five times the area of Q_3 , find the value of I. (5%)
 - (b) If O_1 and O_2 are specified to have $|V_4| = 30 \text{ V}$ find r_2 and r_3 and hence the total registance at the callest

編號: 161

國立成功大學 109 學年度碩士班招生考試試題

系 所:生物醫學工程學系

考試科目:電子學

考試日期:0210,節次:2

第2頁,共2頁

of Q1. (5%)

- (c) Find $r_{\pi 1}$ and g_{m1} assuming that $\beta_1 = 50$. (5%)
- (d) Find R_{in} , A_{ν} , and R_{o} . (5%)
- 7. (20%) For the Darlington voltage follower shown in Figure 3, please derive the following characteristics of the Darlington voltage follower.

$$\begin{split} R_{in} &= (\beta+1)[r_{e1} + (\beta_2+1)(r_{e2}+R_E)] \\ R_{out} &= R_E || \left[r_{e2} + \frac{r_{e1} + \left[R_{sig}/(\beta_1+1) \right]}{\beta_2+1} \right] \\ \frac{v_o}{v_{sig}} &= \frac{R_E}{R_E + r_{e2} + \left[r_{e1} + R_{sig}/(\beta_1+1) \right]/(\beta_2+1)} \end{split}$$

Figure 2 CE amplifier with an active load

Figure 3 Darlington voltage follower