編號: 152

國立成功大學 109 學年度碩士班招生考試試題

系 所:測量及空間資訊學系

考試科目:線性代數

第1頁,共2頁

考試日期:0210,節次:2

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. In the following linear system of equations

$$6x + 2y - z = 5$$

$$2x + y + z = 3$$

$$-x + y + 2z = 1$$
the **coefficient matrix** A =
$$\begin{bmatrix} 6 & 2 & -1 \\ 2 & 1 & 1 \\ -1 & 1 & 2 \end{bmatrix}$$

(1a) the determinant det A = ? (5%)

(1b) rank A = ? (5%)

(1c) please compute the solution vector by Gauss elimination. (10%)

(1d) please compute the inverse A^{-1} by **Gauss-Jordan elimination** (15%)

2. Please determine the ①eigenvalues and ②eigenvectors of the matrix A =

$$\begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$$
. (15%)

- 3. Let $\vec{u} = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$ be two vectors. The **inner product** (or **dot product**) $\vec{u} \cdot \vec{v}$ of these two vectors \vec{u} and \vec{v} can also be computed by $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$. Please derive this equation $\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$. (10%)
- 4.A line integral of a vector function $\vec{F}(\vec{r})$ over a curve C is defined by $\int_C \vec{F}(\vec{r}) \cdot d\vec{r} = \int_a^b \vec{F}(\vec{r}(t)) \cdot \frac{d\vec{r}}{dt} dt$. In terms of components, with $d\vec{r} = [dx, dy, dz]$ and ' = d/dt, it becomes $\int_C \vec{F}(\vec{r}) \cdot d\vec{r} = \int_C (F_1 dx + F_2 dy + F_3 dz) = \int_a^b (F_1 x' + F_2 y' + F_3 z') dt$.

Please find the value of the line integral $\int_C \vec{F}(\vec{r}) \cdot d\vec{r} = \int_a^b \vec{F}(\vec{r}(t)) \cdot \frac{d\vec{r}}{dt} dt$ when $\vec{F}(\vec{r})$

編號: 152

國立成功大學 109 學年度碩士班招生考試試題

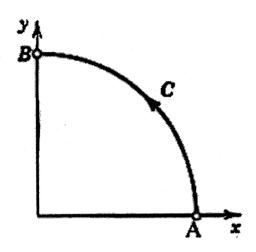
系 所:測量及空間資訊學系

考試科目:線性代數

考試日期:0210,節次:2

第2頁,共2頁

=[-y, -xy]=- $y\vec{i}$ - $xy\vec{j}$ and C is the circular arc as in the following figure from A (1,0) to B(0, 1). (20%)



- 5. After derivation, we have $A = \frac{1}{2} \oint_C (xdy ydx)$. This formula expresses the area of a closed bounded region R in the xy-plane, whose boundary C consists of finitely many smooth curves, in terms of a line integral over the boundary. Let r and θ be polar coordinates defined by $x = r\cos\theta$, $y = r\sin\theta$.
 - (5a) Then one can derive A = $\frac{1}{2} \oint_C r^2 d\theta$. Please derive it. (5%)
 - (5b) Please compute the area of a cardioid $r=a(1-\cos\theta)$, where $0 \le \theta \le 2\pi$. (10%)
 - (5c) Please compute the area of a circle r=a, where $0 \le \theta \le 2\pi$. (5%)