編號: 46

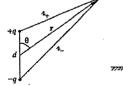
國立成功大學 109 學年度碩士班招生考試試題

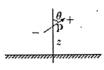
系 所:光電科學與工程學系

考試科目:電磁學

考試日期:0211,節次:2

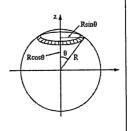
第1頁,共2頁


- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. (10%) (a)E is a vector, prove $\nabla \times (\nabla \times \vec{E}) = \nabla (\nabla \cdot \vec{E}) \nabla^2 \vec{E}$ $(\nabla = \frac{\partial}{\partial x} \hat{x} + \frac{\partial}{\partial y} \hat{y} + \frac{\partial}{\partial z} \hat{z})$
- (b) For a point charge Q located at the origin, find the <u>electric flux</u> through the square surface (side a) located right above the charge with distance a/2
- 2. (15%) A sphere with homogeneous linear <u>dielectric</u> material $\varepsilon_r = 1 + \chi_e$ is placed in a uniform electric field $\vec{E} = E_0 \hat{z}$. (a) find the <u>potential</u> inside V(r<R) and outside V(r>R) the sphere by using the separation of variables method $V(r,\theta) = \sum_{l=0}^{\infty} (A_l r^l + B_l \frac{1}{r^{l+1}}) P_l(\cos\theta)$ $r \ge R$


B.C. (i)
$$V_{in} = V_{out}$$
 at $r = R$ (i) $\varepsilon \frac{\partial V_{in}}{\partial r} = \varepsilon_0 \frac{\partial V_{out}}{\partial r}$ at $r = R$ (iii) $V_{out} \rightarrow -E_0 r \cos \theta$ $r >> R$, $z = r \cos \theta$

- (b) Find the <u>electric field</u> inside E_{in} (r<R) and outside E_{out} (r>R) $(\vec{E} = -\nabla V = -\frac{\partial V}{\partial r}\hat{r} \frac{1}{r}\frac{\partial V}{\partial \theta}\hat{\theta} \frac{1}{r\sin\theta}\frac{\partial V}{\partial \theta}\hat{\phi})$
- (c) Find the Polarization Density $\underline{\mathbf{P}}$ inside the dielectric sphere and the induced Surface Charge Density σ_b $(P_{in} = \varepsilon_0 \chi_e E_{in}, \sigma_b = P \cdot \hat{n})$
- 3. (10%)(a)A electric dipole $\mathbf{p}(=qd)$ consists of two equal and opposite charges $\pm \mathbf{q}$ separated by a distance \mathbf{d} pointing at the \mathbf{z} direction. At a point $(\mathbf{r}, \theta, \phi)$ far from the dipole $(\mathbf{r} >> \mathbf{d})$, find the approximated potential \mathbf{V} and electric field \mathbf{E}

$$\left(V = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{t_+} - \frac{q}{t_-}\right), \quad t_{\pm} = r \left(1 + \left(\frac{d}{2r}\right)^2 \mp \frac{d}{r} \cos\theta\right)^{\frac{1}{2}} \qquad r \left(\frac{1}{1 \pm x}\right)^k \approx 1 \mp kx + \dots, \quad \vec{E} = -\nabla V\right)$$


- (b) A dipole is at distance z above a grounded metal plane. Find the $\underline{\text{torque}} N = p \times E$ on the dipole and the $\underline{\text{rotation}}$
- <u>direction</u> of the dipole if $\theta < \frac{\pi}{2}$. (hint: use the image method of the dipole.)

- 4. (15%) A spherical shell with surface charge density σ and radius R spinning with constant angular velocity ω
- (a) Find the magnetic dipole moment **m** =IA of the spinning spherical shell.
- (b) Find the vector potential **A** for r>>R by using the dipole approximation. $\vec{A}_{dipole}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \hat{r}}{r^2}$
- (c) Find the magnetic field **B** outside the spherical shell at (r, θ, ϕ) for r>R

$$\vec{B} = \nabla \times \vec{A} = \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} \left(\sin \theta A_{\phi} \right) - \frac{\partial A_{\theta}}{\partial \phi} \right) \hat{r} + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial A_{r}}{\partial \phi} - \frac{\partial}{\partial r} \left(r A_{\phi} \right) \right) \hat{\theta} + \frac{1}{r} \left[\frac{\partial}{\partial r} \left(r A_{\theta} \right) - \frac{\partial A_{r}}{\partial \theta} \right] \hat{\phi}$$

編號: 46

國立成功大學 109 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:電磁學

考試日期:0211,節次:2

第2頁,共2頁

- 5. (10%) (a) Please <u>write down</u> the Maxwell equations (4 equations) with free charge ρ_f and free current density \vec{J}_f , and describe their physical significant.
- (b) Please derive four boundary conditions of electromagnetic fields based on the Maxwell equations.
- 6. (10%) (a) It is known that the reflection intensity is zero when a TM wave is obliquely incident from an optically thinner medium (refractive index n_1) onto an optically thicker medium (refractive index n_2) with Brewster's angle θ_B .

 Please <u>derive</u> that the Brewster's angle $\theta_B = \tan^{-1}(\frac{n_2}{n_1})$.
- (b) Following the previous question, when an un-polarized light illuminates onto the medium interface with Brewster's angle (that is, $\theta_i = \theta_B$), the reflected light will become a TE wave (see the figure on the right). Please <u>derive</u> that the $\theta_t = 90^\circ$ θ_B under such condition.
- 7. (15%) An electromagnetic wave propagates in air, in which the instantaneous expression of the electric field is given by $\vec{E}(x,t) = \hat{a}_z 60\pi \cos(6\pi \times 10^6 t + \beta x)$ (V/m), please find (a) the <u>direction of propagation</u> and <u>frequency</u> f (b) the <u>phase constant</u> β and <u>wavelength</u> λ (c) the <u>instantaneous expression</u> of the magnetic field.
- 8. (15%) For an dielectric-filled (ε_r = 2.25) parallel-plate waveguide in which the distance between two plates a = 5 cm:
- (a) Please find the cutoff frequency of TEM, TM₁, TE₁, TM₂, and TE₂ modes.
- (b) If now an electromagnetic signal with frequency f = 3 GHz is considered, which modes can be excited?
- (c) Following the previous question, please respectively determine the <u>phase and group velocities</u> (in term of light speed in vacuum c) of those guide modes which can be excited at a frequency of 3 GHz.