編號: 45

## 國立成功大學 109 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:電子學

考試日期:0211,節次:1

#### 第1頁,共3頁

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. Transistor in Fig. 1 has  $V_{BE\ (on)} = 0.7$  and  $\beta = 100$ .  $D_1$  is a Schottky diode with turn on voltage of 0.3 V.  $D_2$  is a Zener diode with  $V_Z = 5.4$  V. Please find the output voltage ( $V_{out}$ ) when input voltage ( $V_{in}$ ) is 6 V. (10%)



Fig. 1

- 2. Consider the BiCMOS amplifier shown in Fig. 2. The BJT has  $|V_{BE}| = 0.7 \text{ V}$ ,  $\beta = 200$ ,  $C\mu = 0.8 \text{ pf}$ , and  $f_T = 600 \text{ MHz}$ . The NMOS transistor has  $V_t = 1 \text{ V}$ ,  $K'n(W/L) = 2 \text{ mA/V}^2$ , and  $C_{gs} = C_{gd} = 1 \text{ pF}$ . (30%)
- (a) Consider the dc bias circuit. Neglect the base current of  $Q_2$  in determining the current in  $Q_1$ . Find the DC bias currents in  $Q_1$  and  $Q_2$ . Evaluate the small signal parameters of  $Q_1$  and  $Q_2$  at their bias points.
- (b) Consider the circuit at mid-band frequencies. First determine the small signal voltage gain  $V_o/V_i$ . Then use Miller theorem on  $R_G$  to determine the amplifier input resistance  $R_{in}$ . Finally, determine the overall voltage gain  $V_o/V_{sig}$ .
- (c) First consider the circuit at low frequencies. Determine the frequency of poles due to  $C_1$  and  $C_2$ , and hence estimate the lower 3-dB frequency,  $f_L$ . Second consider the circuit at high frequencies. Use Miller's theorem to replace  $R_G$  with a resistance at the input. Use open circuit time constants to estimate  $f_H$ .



Fig. 2

編號: 45

### 國立成功大學 109 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:電子學

考試日期:0211,節次:1

#### 第2頁,共3頁

- 3. Figure 3 shows a MOS differential amplifier. (30%)
- (1) Derive  $I_{bias}$  (current flowing through  $M_1$ ) in terms of R,  $\mu_n C_{ox}$  and  $(W/L)_n$ , where  $(W/L)_1 = 2(W/L)_n$ ,  $(W/L)_2 = (W/L)_4 = (W/L)_5 = (W/L)_n$ ,  $(W/L)_3 = 4(W/L)_n$ , and  $(W/L)_6 = (W/L)_7 = (W/L)_p$ . Assume  $|V_t|$  is the same for all devices.
- (2) Derive the small-signal voltage gain vo/vi.



Fig. 3

- 4. The  $V_{DD}$ , input DC bias, and  $I_{BIAS}$  in Fig. 4 are 5 V, 3 V, and 300  $\mu$ A, respectively. The transistors in Fig. 4 have  $\mu_n C_{ox} W_1/L_1 = \mu_p C_{ox} W_2/L_2 = \mu_p C_{ox} W_3/L_3 = \mu_p C_{ox} W_4/L_4 = 200 \ \mu\text{A/V}^2, \ V_{tn} = 1 \ V, \ \text{and} \ V_{tp} = -1 \ V. \ (20\%)$
- (a) What is the output DC voltage of the circuit?
- (b) Find the small-signal voltage gain of the circuit.



編號: 45

# 國立成功大學 109 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:電子學

考試日期:0211,節次:1

#### 第3頁,共3頁

5. For an ideal BJT the  $I_C$  doesn't vary with the  $V_{CE}$  when BJT is in active mode. However, each  $I_{C}$ - $V_{CE}$  curve in the realistic  $I_{C}$ - $V_{CE}$  characteristics of BJT of Fig. 5 shows that the  $I_{C}$  slightly increases with increasing the  $V_{CE}$  when BJT is in active. The injected carrier profiles in base region of BJT with different scenarios of bias are showing in Fig. 6. Which figure in Fig. 6 is the cause of slight increases of  $I_{C}$  with enlarged  $V_{CE}$  for BJT in active mode? And give your interpretation about the figure you pick in Fig. 6 why it is the cause of slight increases of  $I_{C}$  with enlarged  $V_{CE}$  for BJT in active mode. (10%)



Fig. 5



Fig. 6

