編號: 44

國立成功大學 109 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目: 近代物理

考試日期:0211,節次:1

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Useful constants

Planck constant $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$; $e^2/4\pi\epsilon_0 = 1.44 \text{MeV} \cdot \text{fm}$; Bohr radius = 0.053 nm;

Rest energy of electron $m_e c^2 = 0.5 \text{ MeV}$

- 1. Radiation of wavelength $\lambda = 290$ nm falls on a metal surface for which the work function is W = 4.05 eV. What potential is needed to stop the most energetic photoelectrons? (10%)
- 2. Consider a wave packet for which

$$A(k) = \begin{cases} N & -K \le k \le K \\ 0 & elsewhere \end{cases}$$

- a) Calculate $\psi(x, 0)$. (5%)
- b) Use a reasonable definition of the width to show that $\Delta k \Delta x > \frac{1}{2}$ is satisfied. (5%)
- 3. Consider a particle whose normalized wave function is

$$\psi(x) = \begin{cases} 2\alpha\sqrt{\alpha}xe^{-\alpha x} & x > 0\\ 0 & x < 0 \end{cases}$$

- a) For what value of x does $P(x) = |\psi(x)|^2$ peak? (5%)
- b) Calculate $\langle x \rangle$ and $\langle x^2 \rangle$. (5%)
- c) What is the probability that the particle is found between x = 0 and $x = 1/\alpha$? (5%)
- d) Calculate $\phi(p)$ and use this to calculate $\langle p \rangle$ and $\langle p^2 \rangle$. (5%)
- 4. The wave function for a particle is given by

$$\psi(x) = Ae^{ikx} + Be^{-ikx}$$

What flux does this represent? (10%)

- 5. In an electron microscope we wish to study particles of diameter about $0.10 \mu m$.
 - a) What should be the de Broglie wavelength of the electrons? (5%)
 - b) What potential difference should the electrons be accelerated to have that de Broglie wavelength? (5%)
- 6. X-ray photons of wavelength 0.02480 nm are incident on a target and the Compton-scattered photons are observed at an angle of 90.0 degrees.
 - a) What is the momentum of the scattered photons? (5%)
 - b) What is the kinetic energy of the scattered electrons? (5%)
- 7. In the Rutherford scattering, an α -particle is elastic scattered by a gold nucleus in to angle.
 - a) Derive and show the momentum transfer p is: $\Delta p = 2p \sin \frac{\theta}{2}$ (5%)
 - b) Calculate the kinetic energy of an α -particle (Z=2) if the distance of closest approach to a gold nucleus (Z=79) is 10 fm, when scattered at 90 degrees. (5%)
- 8. In the Bohr model of the hydrogen atom, an electron transition occurs from n = 3 to n=2.

編號: 44

國立成功大學 109 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:近代物理

考試日期:0211,節次:1

第2頁,共2頁

- a) What is the energy of the emitted radiation? (4%)
- b) Compare (a) to the orbital frequency of an electron with n = 3 to n=2 that it can radiate. (6%)
- 9. Consider the normal Zeeman effect applied to the 3d to 2p transition.
 - a) Sketch an energy level diagram that shows the splitting of the 3d and 2p levels in an external magnetic field. Indicate all possible transitions from each m_k state of the 3d level to each m_k state of the 2p level. (5%)
 - b) How many different transition energies can be emitted? Explain it. (5%)