編號: 43

國立成功大學 109 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:工程數學

考試日期:0211,節次:3

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. (a) Show that the given matrix **A** is diagonalizable. $A = \begin{pmatrix} -8 & -10 & 7 & -9 \\ 0 & 2 & 0 & 0 \\ -9 & -9 & 8 & -9 \\ 1 & 1 & -1 & 2 \end{pmatrix}$
 - (b) Find the matrix **P** that diagonalizes **A** and the diagonal matrix **D** such that $D = P^{-1}AP$.
 - (c) Find the 10th power of **A**. (5%, 5%, 10%)
- 2. (a) Show that $\int_c \vec{F} \cdot d\vec{r}$, where $\vec{F}(x,y) = (y^2 6xy + 6)\vec{i} + (2xy 3x^2 2y)\vec{j}$, is independent of the path C between (-1,0) and (3,4).
 - (b) Find a potential function φ for \vec{F} .
 - (c) Evaluate $\int_{(-1,0)}^{(3,4)} \vec{F} \cdot d\vec{r}$. (5%, 5%, 5%)
- 3. Solve the boundary value problem. (5%)

$$x^2y'' - 4xy' + 6y = x^4, y(1) - y'(1) = 0, y(3) = 0$$

- 4. Expand $f(x) = x^4, -1 < x < 1$, in a Fourier series. (5%)
- 5. Solve the given initial value problem (5%)

$$\frac{d^2x}{dt^2} + 9x = 5\sin 3t, \ x(0) = 2, x'(0) = 0.$$

6. Solve Laplace's equation,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

with the boundary conditions: u(x, 0)=0, u(x, 1)=0, u(0, y)=F(y), u(1, y)=0

$$F(y) = y, \quad 0 \le y \le 1/2$$

where
$$F(y) = 1 - y$$
, $1/2 \le y \le 1$

(20%)

編號: 43

國立成功大學 109 學年度碩士班招生考試試題

系 所:光電科學與工程學系

考試科目:工程數學

考試日期:0211, 節次:3

第2頁,共2頁

7. Suppose f(z) is analytic on the closed disk of radius r centered at z_0 , prove that

$$f(z_0)=rac{1}{2\pi}\int_0^{2\pi}f(z_0+re^{i heta})d heta$$

(10%)

8. Prove that

$$\int_{-\infty}^{\infty} f(t)g^*(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)G^*(\omega)d\omega$$

where $F(\omega)$ and $G(\omega)$ are the Fourier transforms of f(t) and g(t), respectively. (10%)

Hint:
$$\delta(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\pm i \tau \omega} d\tau$$

9. Find the first four terms of the Taylor series about z=3 of the function

$$f(z) = \frac{1}{5 - z}$$

(10%)