編號: 40

國立成功大學 109 學年度碩士班招生考試試題

系 所:物理學系

考試科目:物理數學

考試日期:0211,節次:1

第1頁,共1頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1: Let A and B be two non-zero $d \times d$ matrices (with d being a positive integer) that satisfy $(A B)^{\dagger} + B^{-1}A = 0$.
 - (1) Prove that if B is unitary and if A is real, then A is antisymmetric. (5%)
 - (2) Without assuming that B is unitary, prove that if both A and B are real and if d is an odd number, then A must be singular. (13%)
- 2: Let $\vec{n} = (n_x, n_y, n_z) \in \mathbb{R}^3$ and $\mathbf{C} = \begin{pmatrix} 1 + n_z & n_x \mathrm{i} n_y \\ n_x + \mathrm{i} n_y & 1 nz \end{pmatrix}$. Compute the determinant $|\mathbf{C}|$ and the trace of \mathbf{C} and use them to show that \mathbf{C} has *only* non-negative eigenvalues if and only if $|\vec{n}|^2 \leq 1$. (11%)
- 3: For the scalar function $\phi(x,y,z)=(x^2+y^2+z^2)\mathrm{e}^{-(x^2+y^2+z^2)}$,
 - (1) rewrite it in the spherical polar coordinates and compute its gradient; (10%)
 - (2) determine the coordinates at which the gradient vanishes; (6%)
 - (3) determine the directional derivative along $\hat{n} = \frac{3}{5}\hat{e}_x + \frac{4}{5}\hat{e}_y$ at the Cartesian coordinates of $x = x_0, y = 0, z = 0$ $(x_0 > 0)$ where \hat{e}_x, \hat{e}_y are unit vectors pointing along, respectively, the x-axis and the y-axis. (9 %)
- **4.** In solving the Laplace equation in plane polar coordinates using the method of separation of variables, one arrives at the linear, ordinary differential equation (ODE) of R(r): $r^2 \frac{d^2 R}{dr^2} + r \frac{dR}{dr} n^2 R = 0$ with n being a positive integer.
 - (1) Solve the ODE and find its *most* general solution R(r) (without imposing any boundary conditions). (7%)
 - (2) How does the requirement of R(r) remains finite (i.e., $|R(r)| < \infty$) when (i) $r \to 0$ (ii) $r \to \infty$ each affect the solution R(r) allowed? (2%)
 - (3) Find a particular solution R(r) satisfying the boundary conditions that R(1) = 0 and R(e) = 1. (6%)
- 5: For the family of functions $f_n(x)=x^n$ parametrized by a non-negative integer $n=0,1,2,\ldots$
 - (1) determine a general expression for the Laplace transform of $f_n(x)$ by first evaluating explicitly the case of n=0,1, and 2 [specify also the value s_0 such that the Laplace transform $F_n(s)=\mathcal{L}[x^n]$ is well-defined for all $s>s_0$ and all integer $n\geq 0$].
 - (2) determine the Fourier transform for $f_0(x)$; does the Fourier transform of $f_n(x)$ exist for $n \ge 1$? (5%)
- **6.** The Legendre polynomial reads as $P_\ell(x) = \frac{1}{2^\ell \ell!} v(x)$ where $v(x) = \frac{\mathrm{d}^\ell}{\mathrm{d} x^\ell} [(x^2-1)^\ell]$
 - (1) Show that v(x) and (hence) $P_{\ell}(x)$ are both solutions to $(1-x^2)\frac{\mathrm{d}^2y}{\mathrm{d}x^2} 2x\frac{\mathrm{d}y}{\mathrm{d}x} + \ell(\ell+1)y = 0$. (8%)
 - (2) Show that $P_{\ell}(x)$ satisfies the orthogonality relation $\int_{-1}^{1} P_{k}(x) P_{\ell}(x) dx = 0$ for all $k \neq \ell$. (7%)