編號: 174

國立成功大學 109 學年度碩士班招生考試試題

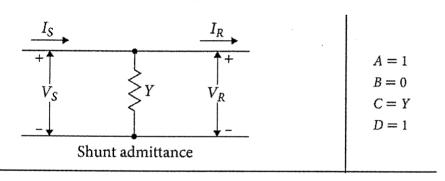
系 所:電機工程學系

考試科目:電力工程

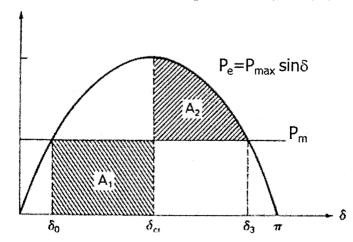
考試日期:0210,節次:2

第1頁,共3頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。


1. (20%) A three-phase transmission line serves a load of 400 MVA, 0.8 lagging power factor at 345 kV. The ABCD matrix of the 480km line is shown below.

$$A = D = 0.8 \angle 1^{\circ}$$
$$B = 170 \angle 80^{\circ} \Omega$$


$$C = 0.002 \angle 90^{\circ} S$$

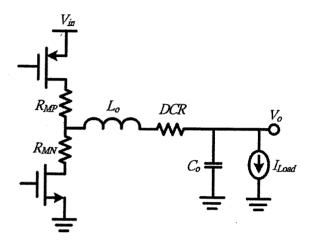
- (a) (10%) A 250-Mvar, 345-kV shunt reactor whose admittance is 0.002 ∠-90° S is connected to the receiving end of the 480 km line. Determine the **equivalent** ABCD constants of the line combined with the shunt reactor;
- (b) (10%) Determine the sending-end line-to-neutral voltage, the sending-end current.

Hint: the shunt admittance matrix

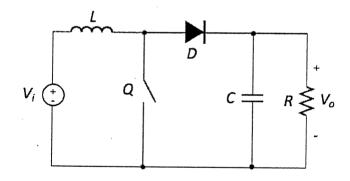
- 2. (20%) A three phase synchronous generator is operating in power balance with mechanical power of P_m and electrical power of P_e. The inertia of the generator is 2H and the nominal frequency is f_o. A three phase bolted fault occurs at the generator terminal. The power curve is given with the parameters shown below. Please derive the followings:
 - (a) (10%) critical clearing angle δ_{cr} in terms of the parameters (δ_0 , δ_3 , P_m and P_{max});
 - (b) (10%) critical clearing time t_{cr} in terms of the parameters (δ_{cr} , δ_0 , f_0 , H, P_m).

編號: 174

國立成功大學 109 學年度碩士班招生考試試題


系 所:電機工程學系

考試科目:電力工程


考試日期:0210,節次:2

第2頁,共3頁

3. (10%) The equivalent Buck converter circuit is shown in the figure below. The parasitic resistance of the MOSFET switches P-MOS, N-MOS are R_{MP} and R_{MN}, respectively. The equivalent DC resistance of the inductor L_o is DCR. Assume that the Buck converter is operating at steady-state and neglect the effect of capacitor current. Please **prove** that the duty ratio D is affected by the input voltage V_{in}, output voltage V_o, and load current I_{Load}.

4. (11%) An ideal boost converter is show in the following figure.

- (a) (7%) Assuming Q and D are also ideal, "derive" the voltage gain V₀/V_i as function of duty cycle of switch Q.
- (b) (4%) If V_i = 20 V, L = 100 μ H, C is very large, duty cycle of Q is 50% and switching frequency is 50 kHz. What R should be to make the mode of operation discontinuous?
- 5. (14%) A three-phase Y-connected 60 Hz synchronous generator operates at the rated condition with 20 kV and 100 MVA. The per-phase armature resistance and synchronous reactance are respectively 0.16 Ω and 1.6 Ω .
 - (a) (7%) What is the voltage regulation for the generator operating at the rated condition with 0.9 lagging power factor?
 - (b) (7%) What is the voltage regulation if the power factor is 0.9 leading?

編號: 174

國立成功大學 109 學年度碩士班招生考試試題

系 所:電機工程學系

考試科目:電力工程

考試日期:0210,節次:2

第3頁,共3頁

- 6. (12%) Under some load condition, a three-phase induction motor rated 60 Hz, 220 V, 25 hp is drawing a line current of 50 A from the power source at 0.85 lagging power factor. In this condition, the stator copper loss is 600 W, iron loss is 300 W, rotor copper loss is 500 W and rotational loss is 400 W. Calculate:
 - (a) (3%) air-gap power;
 - (b) (3%) slip in %;
 - (c) (3%) mechanical output power;
 - (d) (3%) efficiency.
- 7. (13%) For a shunt DC generator (self-excited generator),
 - (a) (5%) draw and explain the equivalent circuit;
 - (b) (4%) assuming that there is residual magnetic flux for the generator to start up, describe the start-up process till steady-state operating speed;
 - (c) (4%) would the field resistance affect the start up? If yes, how?