編號: 245

國立成功大學 109 學年度碩士班招生考試試題

系 所:工業與資訊管理學系

考試科目:作業研究

考試日期:0211,節次:2

第1頁,共入頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

I.1. (20%) Consider the following linear programming problem and its resulting final simplex tableau.

Maximize $Z = ax_1 + bx_2$

subject to $x_1 \le c$

 $x_2 \le 6$

 $6x_1 + dx_2 \le 36$

 $x_1, x_2 \ge 0$.

Given that 0 < a < b, 0 < d < 6, and c + d > 6, its resulting final simplex tableau is given as:

B.V.	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	RHS
Z	0	0	0	10/3	2/3	e
x_3	0	0	1	2/3	-1/6	3
x_2	0	1	0	1	0	6
x_1	1	0	0	-2/3	1/6	2

Identify the values of a, b, c, d, and e.

I.2. (15%) Given 4 decision alternatives and 4 states of nature, consider the following **Profits** in the payoff table.

	State 1	State 2	State 3	State 4	
Alternative1	-50	50	90	125	
Alternative2	-20	35	80	160	
Alternative3	-40	70	100	110	
Alternative4	-60	20	85	140	

- (i) Which decision alternative should be chosen using the Maximin payoff criterion?
- (ii) Which decision alternative should be chosen using the Minimax Regret criterion?

Consider the following prior probabilities for the states of nature.

	State 1	State 2	State 3	State 4
Probability	0.1	0.5	0.2	0.2

- (iii) Which decision alternative should be chosen using the Bayes' desicion rule?
- (iv) What is the highest amount you would be willing to pay for the perfect information (assuming decisions are based on the Bayes' desicion rule)?
- (v) Suppose the true probabilities for the states of nature 3 and 4 (State 3 & State 4) are both 0.2, let p be the prior probability of States 1. At which value of p does the optimal decision alternative shifts from one to another using Bayes' desicion rule?

(a)
$$p = 0.25$$

(b)
$$p = 0.38$$

(c)
$$p = 0.53$$

(d)
$$p = 0.59$$
.

編號: 245

國立成功大學 109 學年度碩士班招生考試試題

系 所:工業與資訊管理學系

考試科目:作業研究

考試日期:0211,節次:2

第2頁,共2頁

I3. (15%) Consider the following non-linear programming model:

Minimize
$$f(\mathbf{x}) = x_1^2 + x_2^2 - 4x_1 - 4x_2 + 3$$

subject to:
$$g_1(\mathbf{x}) = 2x_1^2 + 2x_2^2 - 12 \le 0$$

Write down the Lagrange function and the KKT conditions for this problem and find the points satisfying these conditions.

Π

- 1. People arrive at a barber shop according to a Poisson process with a mean of one person per hour. The time taken by the barber for a haircut is an exponential random variable with a mean of thirty minutes. (a) Suppose the barber does not allow people to enter when he is busy, calculate L (the expected number of customers in the barber shop), W (the expected time that a customer spends in the barber shop), and P_0 (the probability that no customer is in the barber shop) (b) Suppose the barber works for ten hours a day. How many customers are lost every day if he does not allow people to enter when he is busy? (15%)
- Consider a deterministic inventory problem which does not allow stock out. Denote d as the demand per unit time, k as the setup cost for ordering one batch of amount Q, c as the unit cost of the commodity, h as the inventory holding cost per unit per unit time. (a) Formulate the total cost TC per unit time if an amount Q is ordered each period, and find the optimal Q^* , i.e. the economic order quantity (EOQ). (b) If the cost of the commodity cd is ignored ($\overline{TC} = TC cd$), show that the optimal total cost is $\overline{TC}^* = \sqrt{2hkd}$, and the ratio of the total cost associated with a non-optimal quantity Q to that associated with the optimal quantity Q^* is $\overline{TC}/\overline{TC}^* = (Q^*/Q + Q/Q^*)/2$. (c) If the order quantity Q is twice of the optimal order quantity Q^* , then how much percent of the total cost will be increased as compared to the optimal cost \overline{TC}^* ? (20%)
- For a Markov chain with the one-step transition probability matrix P shown on the right, (a) find $P^* = \lim_{n \to \infty} P^{(n)}$. (b) Starting with state 1, what is the probability of being in state 1 in the long run? (c) Suppose the initial state of being in state [0, 1, 2, 3, 4] is selected randomly according to the probability of [0, 1, 2, 3, 4]

randomly according to the probability of [0.1, 0.2, 0.3, 0.4, 0]. What is the probability of being in state 1 in the long run? (15%)