編號: 251

國立成功大學 109 學年度碩士班招生考試試題

系 所:企業管理學系

考試科目:微積分

考試日期:0211,節次:3

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Part A: Multiple-Choice Questions (40 points, 10 points each)

1. Let

$$f(x) = \frac{-x^2 + 3}{2x^2 - 6x}.$$

Then

- (a) $y = -\frac{1}{2}$ is a horizontal asymptote;
- (b) x = 0 is a horizontal asymptote;
- (c) x = 0 is a vertical asymptote;
- (d) None of above.

2. Consider

$$f(x) = 5x^{4/3} - 2x^{5/3}.$$

Then

- (a) both x = 0 and x = 8 are critical numbers of f(x);
- (b) f(x) is decreasing on the open interval (0,8);
- (c) f(x) are increasing on open intervals $(-\infty,0)$ and $(8,\infty)$;
- (d) f(0) = 0 is a relative minimum and f(8) = 16 a relative maximum.

3. Consider the improper integral

$$\int_0^\infty e^{-ax} f(x) dx.$$

Let f(x) be continuous on $[0,\infty)$. Assume that there exist $x_0 \ge 0$, M>0 and $\gamma>0$ such that $|f(x)| \le Me^{\gamma x}$ for $x \ge x_0$. Then

- (a) the integral is defined (which means that the improper integral converges,) provided $\,a>0$;
- (b) the improper integral is defined provided $a > \gamma$;
- (c) the improper integral is defined provided $a > -\gamma$.
- (d) If f(x) = x and the improper integral is defined, the integral equals $-\frac{1}{a^2}$.

4. Which of the following series are convergent?

(a)
$$\sum_{n=0}^{\infty} \frac{5}{4^n}$$
; (b) $\sum_{n=0}^{\infty} \frac{n}{\sqrt{n^2+1}}$; (c) $\sum_{n=0}^{\infty} ne^{-n}$; (d) $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1}$, for $x \in (0,2)$.

編號: 251

國立成功大學 109 學年度碩士班招生考試試題

系 所:企業管理學系

考試科目:微積分

考試日期:0211, 節次:3

第2頁,共2頁

Part B: Please simplify your answers as possible as you can. (60 points)

- 5. Let $F(x, y) = \ln(x^2 xy + y^2)$.
 - (a) (5 points) Find the domain of F(x,y)
 - (b) (5 points) Find the critical point of F(x, y).
- 6. (10 points) Show that

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x > 0, \\ 0 & \text{for } x \le 0 \end{cases}$$

gives a density function of a continuous random variable X, for a given $\lambda > 0$.

- (a) (5 points) Verify that the expected value of X, $\mu = E(X) = \int_0^\infty x \lambda e^{-\lambda x} dx = \frac{1}{\lambda}$,
- (b) (5 points) and the variance of X, $var(X) = \int_0^\infty (x \mu)^2 \lambda e^{-\lambda x} dx = \frac{1}{\lambda^2}$.
- 7.(a)(10 points) Estimate $\sqrt[5]{33}$ to 3 decimal places. (Hint: Let $f(x) = \sqrt[5]{x}$, and consider the 1st order Taylor expansion for $f(x + \Delta x)$ at x = 32.)
 - (b) (5 points) Estimate the possible error for your estimation, and tell us why?
- 8. (a) (5 points) Show that the sigmoid function $F(x) = \frac{1}{1+e^{-x}}$ defines a continuous probability distribution on $(-\infty,\infty)$;
 - (b) (5 points) its density function f(x) = F'(x) is always positive and symmetric about y-axis.
 - (c) (5 points) Verify that f(x) reaches its maximum at x = 0.

Reference

Ron Larson and Tzuwei Cheng (2014), Calculus: An Application Approach
Bill Armstrong and Don Davis (2014), Brief Calculus for the Business, Social, and Life Sciences