編號: 248

國立成功大學 109 學年度碩士班招生考試試題

系 所:資訊管理研究所

考試科目:資料結構

考試日期:0211,節次:3

第1頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. In each of the following question, please specify if the statement is true or false.
 - a. $[2\%] n^{1.5} = O(n \log n)$
 - b. [2%] A complete binary tree with a height of h can have more nodes than a full binary tree with a height of h.
 - c. [2%] When we use a max heap to implement a priority queue, the time complexity of both the add and delete operations are O(n).
 - d. [4%] T(n) = T(n-1) + n, T(1) = 1. Then $T(n) = O(n^3)$
- 2. In computer science, a priority queue is an abstract data type which is like a regular queue, but each element has a "priority" associated with it. Elements with higher priorities are served before elements with lower priorities.
 - a. [5%] Design a data structure in C++ or Java to represent priority queues where both the data and the priority are integers. Note: 1. Only the class definition is required; 2. The size of the queue should only be constrained by the memory space; 3. Your design should allow efficient enqueue and dequeue operations; 4. The use of STL classes is prohibited.
 - b. [10%] Implement the enqueue and dequeue operations/methods.
- 3. Answer the following question regarding Red-Black tree
 - a. [2%] Define red-black tree
 - b. [8%] What is the big O performance (in terms of the number of nodes in the tree) for the operations find, insert, and remove for a red-black tree in the best and worst cases?
 - c. [10%] Show the tree that results from inserting the values 2, 1, 4, 5, 9, 3, 6, 7 into an initial empty red-black tree. Show the tree after each insertion.
- 4. [5%] Given an expression, such as " $\{[2 \times (a+b)] c\} \times 3(d+e)$ ", implement a function in C++ or Java that checks the proper opening and closing of parenthesis.

國立成功大學 109 學年度碩士班招生考試試題

系 所:資訊管理研究所

考試科目:資料結構 考試日期:0211,節次:3

第2頁,共2頁

編號: 248

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

5 \ [32%] True or False, and EXPLAIN

Choose T(true) or F(false). If the statement is correct, briefly state why. If the statement is wrong, explain why or give a counterexample. Answers WITHOUT reasons will get at most 1 point.

- (a) [4%] (T, F) If we want to randomize the ordering of n integers A[1],...,A[n], we can generate another n random numbers B[1],...,B[n] with values in [- n^5 , n^5], and then sort B[\cdot] in ascending order. We can then use this ordering to reorder A[1],...,A[n]. Therefore, to randomize n integers takes $\Omega(n \log n)$ time.
- (b) [4%] (**T**, **F**) Let $f(x) = \sum_{i=0}^{n} A[i]x^{i}$, $g(x) = \sum_{j=0}^{m} B[j]x^{j}$, $f(x) + g(x) = \sum_{k=0}^{\max\{m,n\}} C[k]x^{k}$, and $f(x) \cdot g(x) = \sum_{l=0}^{mn} D[l]x^{l}$. Calculating C[] and D[], takes $O(\max\{m,n\})$ and $\Theta(mn)$ time, respectively.
- (c) [4%] (T, F) Based on (b), if A[] and B[] store their p and q non-zeros in two ordered doubly linked lists in ascending order. Then, to calculate C[] and D[] takes O(p+q) and $\Theta(pq)$ time, respectively.
- (d) [4%] (T, F) For a binary search tree of *n* integers, if we insert an integer of new value to the tree, and then delete that integer right away. It is possible the tree structure becomes different from its original form.
- (e) [4%] (T, F) Given a complete undirected graph K_n with n nodes, let $c_{ij}>0$ represent the length of any edge (i,j). We can use Dijkstra's algorithm to find a shortest simple path that has to pass all n nodes.
- (f) [4%] (T, F) Given an undirected graph G=(N,A) of |N|=n nodes and |A|=m arcs, let $c_{ij} \ge 0$ represent the length of $(i,j) \in A$. To detect whether there is a zero-length cycle passing node i takes O(m) time.
- (g) [4%] (T, F) Given a Taipei city street map composed by street segments with n nodes and m arcs, where an arc is a street segment with two adjacent nodes. The average degree for a node is $\Omega(n)$.
- (h) [4%] (T, F) To build a min-heap of n values, it takes $\Omega(n \log n)$ time.
- 6 · [18%] Given a simple directed network G=(N,A) of n=|N| nodes A|=m arcs, let $c_{ij} \ge 0$, x_{ij} and u_{ij} represent the length, flow, and capacity for $(i,j) \in A$. If n is even and $U=\max_{(i,j)\in A}\{u_{ij}\}$, we want to send a flow of F_k units for n/2 pairs $(o_k,d_k)=(k,k+n/2)$, k=1,...,n/2. Answer the following questions:
- (a) [6%] Briefly explain how to determine whether F_1 can be successfully sent without violating the arc capacity from the origin node 1 to the destination node 1+n/2. What is the complexity of your method?
- (b) [6%] Briefly explain how to construct a sub-network $G_k = (N_k, A_k)$ which only contains required nodes and arcs on all possible shortest paths (i.e., the minimum number of arcs) connecting from an origin node o_k to a destination node d_k . What is the complexity of your method?
- (c) [6%] Suppose the complexity of your method in (a) is S(n, m, U) time. To send all the flows of F_k units for each k = 1, ..., n/2 at the same time, briefly explain how to determine whether this is possible or not (if we cannot send F_k units for some k). Is there a method that can do this in O(S(n, m, U)) time?