題號: 405 國立臺灣大學109學年度碩士班招生考試試題

科目:離散數學(B)

題號:405 共 1 頁之第 1 頁

節次: 6

1. (15 points) Let S be a set of n elements. Let A, B be two different subsets of S chosen uniformly at random. What is the probability that A is a subset of B? Show your derivation.

2. (10 points) Solve the following recurrence (show your derivation):

$$a_0 = 2,$$

 $a_1 = 1,$
 $a_n = 5a_{n-1} - 6a_{n-2} + 2^n$, for all $n \ge 2$.

- 3. (15 points) Find a positive integer p such that $\frac{(p+13)!}{p!13!} \equiv 7 \pmod{13}$ or show that such an integer does not exist. Prove the correctness of your answer.
- 4. (35 points) For each of the following statements, determine whether it is true of false. No explanation is needed. You get +5 points for every correct answer and -6 points for every incorrect one. (0 points if you do not answer.)
 - (a) $\exists x (P(x) \land Q(x)) \equiv \exists x P(x) \land \exists x Q(x).$
 - (b) In propositional logic, $\{\oplus,\leftrightarrow\}$ is a functionally complete set.
 - (c) If A and B are two countably infinite sets, then |A| = |B|.
 - (d) If S is an infinite set, then 2^S must be uncountable.
 - (e) If a relation R is transitive, then R^2 must also be transitive.
 - (f) The set $\{(f_1(n), f_2(n)) \mid f_1(n) \in O(f_2(n))\}$ is a partial ordering on the set of all positive functions $f: \mathbb{N} \to \mathbb{R}^+$.
 - (g) If R_1 and R_2 are two different relations defined on set A, then the (directed) graphs representing R_1 and R_2 must not be isomorphic.
- 5. (10 points) Let G = (V, E) be a simple planar undirected graph with every vertex having degree 5. Is it true that G must have at least 12 vertices? Prove your answer.
- 6. (15 points) If a graph G has chromatic number k, but every graph G' resulting from removing one edge from G has chromatic number at most k-1. Is it always true that every vertex in G has degree at least k-1? Prove your answer. Recall that the chromatic number of a graph is the minimum number of colors required to color all vertices such that adjacent vertices have different colors.