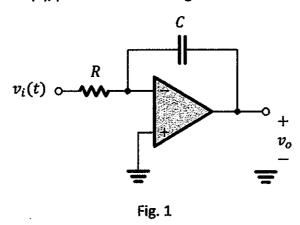
題號: 415


國立臺灣大學 109 學年度碩士班招生考試試題

科目:電子學(C)

行日·电丁字(U 節次: 8 **超號: 415** 共 <u>2</u> 页之第 1 页

1. The circuit in Fig. 1 is a Miller integrator. Please answer the following questions.

- (a) Consider a Miller integrator with R = 10 k Ω and C = 1 nF. Assume the gain of the op-amp is infinite and the slew rate is 1 V/ μ s. For a 10-kHz sinusoidal input, what is the maximum amplitude allowed? [10%]
- (b) If the open-loop op-amp has a finite gain of Ao, derive the transfer function of the circuit. [10%]
- (c) For the transfer function in (b), please define its dc gain and 3-dB frequency. [10%]

2. Fig. 2 is the ac equivalent circuit of a common-base amplifier. For the BJT, assume the transconductance is g_m , current gain is β and r_0 is large.

- (a) If the circuit is treated as a voltage amplifier, please draw the two-port voltage amplifier model and specify the parameters. [5%]
- (b) If a resistor R_B is added between the base terminal and ground, repeat (a). [10%]
- (c) If the circuit is treated as a current amplifier, please draw the two-port current amplifier model and specify the parameters. [5%]
- (d) If a resistor R_B is added between the base terminal and ground, repeat (c). [10%]

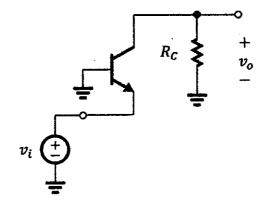


Fig. 2

- 3. The small-signal equivalent circuit of a two-stage op-amp is given in Fig. 3.
 - (a) Derive the transfer function of the amplifier. [10%]
 - (b) Assume $G_{m1} = G_m$, $G_{m2} = 2G_m$, $R_{o1} = R_{o2} = R$, $C_C = 10C$, $C_1 = C$ and $C_2 = 2C$, find the poles and zeros. [10%]
 - (c) Based on (b), find the phase margin of the op-amp. [10%]

題號: 415 國立臺灣大學 109 學年度碩士班招生考試試題

科目:電子學(C)

節次: 8

題號: 415

共 卫 真之第 己 頁

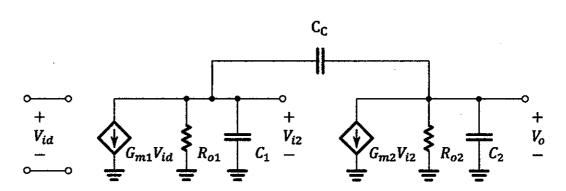


Fig. 3

- 4. Find the correct statements about n-channel MOSFETs. (choose all that applies) [5%]
 - (a) Current conduction due to both electron and hole currents
 - (b) Current flow due to carrier diffusion
 - (c) Current flow due to carrier drift
 - (d) V_A is independent of the transistor size for a given fabrication technology
 - (e) g_m is independent of the transistor size for a given fabrication technology
- 5. Find the correct statements about BJTs. (choose all that applies) [5%]
 - (a) Current conduction due to both electron and hole currents
 - (b) Current flow due to carrier diffusion
 - (c) Current flow due to carrier drift
 - (d) V_A is independent of the transistor size for a given fabrication technology
 - (e) g_m is independent of the transistor size for a given fabrication technology