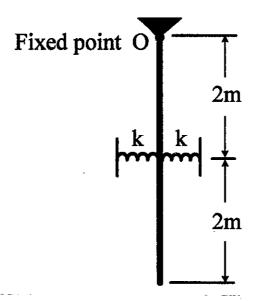
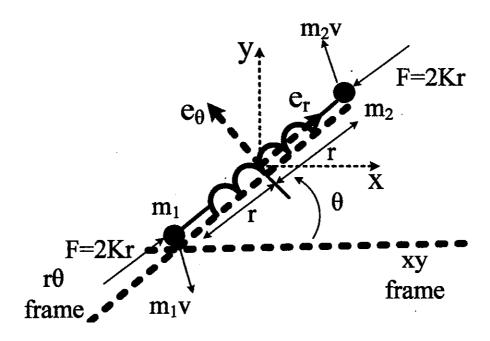
題號: 227

國立臺灣大學 109 學年度碩士班招生考試試題

科目: 動力學(A)


題號: 227

節次: 8


共2页之第1页

1. If the lower end of a 6-kg slender rod is displaced a small angle  $\theta$  and released from the rest. Each spring has a stiffness of k=200N/m and is un-stretched when the rod is hanging vertically. Please determine

- (a) (10%) The total energy equation with respect to the parameter  $\theta$
- (b) (5%) The equation of motion with respect to the parameter  $\theta$  (assuming  $\theta \approx 0$ )
- (c) (5%) The natural frequency of system vibration



- 2. Two 0.1 kg-massed are connected to a linear spring on a frictionless table. The center of mass of the 2-particle system is stationary. At the instant shown, the velocity is  $\vec{V}_I = \vec{V}_2 = 0.1 \vec{e}_r + 2.5 \vec{e}_\theta$  m/s and r = 0.5m. The spring constant, K = 10 N/m, and the spring applies no force when the masses are at the origin, F = 2Kr. Note: You do not need to consider the gravity on this system.
- (a) (5%) How many degrees of freedom are in the system?
- (b) (5%) Write the total kinetic energy of this two masses system.
- (c) (5%) Express the work done by the spring.
- (d) (5%) Derive the equations of motion represented by the position  $\theta$  of the two masses system.
- (e) (10%) Plot the path (x, y-coordinate) for one period of oscillation of particle  $m_{I}$ .



見背面

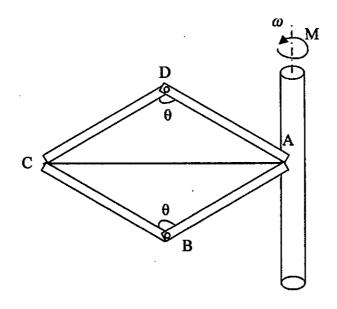
題號: 227

## 國立臺灣大學 109 學年度碩士班招生考試試題

科目: 動力學(A)


避號:227

節次: 8


共2頁之第2頁

3. A slender rod AB of a mass 0.5 kg and length 100 mm is connected to the piston. The piston and piston pin have a combined mass of 1.5 kg. The bar OA is running at a constant speed ( $\omega$ ) of 1500 revolutions per minute in the counterclockwise direction. The bar OA has a length of 30 mm. Neglect the weights and force exerted by the gas in the cylinder. For the angle  $\theta$ =90°, determine

- (a) (5%) Velocity of piston pin B, angular velocity of the slender rod AB.
- (b) (5%) Angular acceleration of the slender rod AB.
- (c) (15%) Force on the piston pin B.



- 4. The shaft is subject to a torque M (Newton meter). Slender rods AB, BC, CD, and DA are in a plane which is perpendicular to the shaft. Slender rods AB, BC, CD, and DA each have a mass m (kg) and length  $\ell$  (meter). The angle between slender rods AB and BC, and angle between rod AD and DC have the same value  $\theta$  (rad). Two cases are discussed.
- (a) (13%) During rotation, the angular velocity  $\omega$  (rad/sec) and applied torque M (Newton meter) of the assembly maintain constant at  $\omega_0$  (rad/sec) and  $M_0$  (Newton meter) respectively.  $\theta$  (rad) changes from  $\theta_1$  to  $\theta_2$ . Determine the time interval in terms of m,  $\ell$ ,  $\omega_0$ ,  $M_0$ ,  $\theta_1$ ,  $\theta_2$ .
- (b) (12%) During rotation,  $\theta$  maintains at  $\pi/3$ , and applied torque M=10t (Newton meter), where t is in seconds. The assembly starts from rest. Slender rods AB, BC, CD, and DA each have mass m=6 kg and length  $\ell=2m$ . Determine the angular velocity when t is 5 seconds.



試題隨卷繳回