題號: 246 科目: 控制系統(B)

港號: 246 共 2 頁之第 1 頁

節次: 4

總分 100 分 ※ 注意:請於試卷內之「非選擇題作答區」依序作答,並應註明作答之大題及小題題號。

1. A car active suspension control system with a pneumatic actuator in parallel with the passive suspension system is shown in Fig.1, where acceleration is measured by an accelerameter. The feedback signals of acceleration \ddot{y}_m and velocity \dot{y}_m are described in Fig.1. The transfer function of acceleration \ddot{y}_m to the ground displacement y_g can be obtained as

$$\frac{\ddot{Y}_m(s)}{Y_p(s)} = \frac{s^2(D \, s + K)}{(C_a + M)s^2 + (C_v + D)s + K} \quad \text{where } M=1 \text{ and } D=K=C_v=2 \text{ are given.}$$

- (a) Please sketch the root locus according to the variation of C_a and $C_a \ge 0$. (10%)
- (b) Solve C_a to yield a damping ratio of 0.69 for closed-loop poles. (10%)

Fig.1

- 2. A flight control system is shown in Fig.2 with controller D(s) and controlled plant G(s).
- (a) Plot the root locus if D(s) = K, including asymptotes, intersection points with imaginary axis and the corresponding value of K. (8%)
- (b) If the controller is given as $D(s) = K \frac{s+2}{s+\alpha}$, please find the value of α to make the root locus pass through the desired point (-1+j4). (8%)
- (c) Please find the value of K at the desired point (-1+j4) in (b). (4%)

Fig. 2

類號: 246°

節次:

國立臺灣大學 109 學年度碩士班招生考試試題

科目: 控制系統(B)

差號:248

共2页之第2页

3. A hydraulic control system controlled by the state feedback with integral control is shown in Fig.3, where

$$\mathbf{A} = \begin{bmatrix} -3 & 1 \\ 3 & -5 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 0 & 1 \end{bmatrix}$, $\mathbf{K} = \begin{bmatrix} k_1 & k_2 \end{bmatrix}$, and k_1 is the parameter of integral control.

- (a) Please find the open loop transfer function. (7%)
- (b) Solve K and $k_{\rm I}$ for the closed-loop poles at -2, -3 and -4. (13%)

Fig. 3

- 4. A frequency domain controller design problem is shown in Fig.4.
- (a) Please find the controller K and the gain crossover frequency to make the system have a phase margin of 50° (13%)
- (b) Please find the gain margin in (a). (7%)

Fig. 4

5. Consider a unity negative feedback control system, as shown in Fig.5, which open loop transfer function is $G(s) = \frac{K(s+q)}{s(s+p)}.$

In order to make the closed-loop control system achieve the specifications of the closed-loop poles at $(-1 \pm j1)$ and the steady state error of 0.1 for ramp input, please solve the control parameters K, p, and q. (20%)

$$R(s)$$
 + $E(s)$ $G(s)$ $C(s)$ Fig.5

試題隨卷繳回