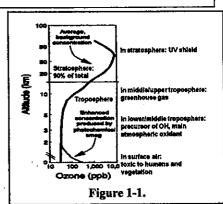
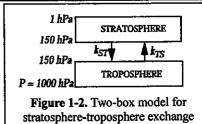
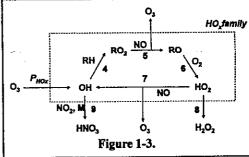
## 國立臺灣大學 109 學年度碩士班招生考試試題

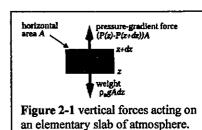
科目:大氣化學

題號: 82


節次: 4


題號: 82


共 / 頁之第


| Constants or equations that you might need                                                                   |                                                      |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| PV= nRT for all gases discussed in this test                                                                 | 1 atm = 760 Torr = 101300 Pa = 1013 hPa              |
| R (gas constant) = $8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ , $0.082 \text{ L atm mol}^{-1} \text{ K}^{-1}$ | 1 ppmv = 1 x $10^{-6}$ mol/mol=1 x $10^{-6}$ atm/atm |
| k (Boltzmann constant) = $1.381 \times 10^{-23} \text{ J K}^{-1}$                                            | $Pa = Nm^{-2}$                                       |
| $N_{av} = 6.02 \times 10^{23} \text{ molecule mol}^{-1}$                                                     |                                                      |

- 1. Atmospheric ozone plays different roles based on the location as shown in Figure 1-1. However, the formation of ozone at the stratosphere and troposphere is very different.
  - a) (12 pts) The ozone formation over the stratosphere is based on the Chapman mechanism. Please describe in detail the major four reactions of the Chapman mechanism.
  - b) (10 pts) The sources of tropospheric ozone can be contributed via transferring from the stratosphere and chemical reactions happening in the troposphere. For the transport part, it can be estimated using a two-box model as shown in Figure 1-2. The residence time of air in the stratosphere is  $\tau_S = 1/k_{ST} = 1.3$  years. Please use the two-box model as shown in Figure 1-2 to estimate the residence time (1/krs) of air in the troposphere (hints: mass balance equations for two boxes for air mass).
  - (12 pts) In the troposphere, ozone pollution is mainly produced by chemical reactions. Figure 1-3 shows the cycling of HO<sub>x</sub> and O<sub>3</sub> production in a polluted atmosphere. Please describe in detail how the ozone is formed in the troposphere.
- 2. (a) (10pts) Please use Figure 2-1 or your favorite method to derive the Barometric Law, which should show how the pressure of air changes with altitude (z) in the following formula  $P(z) = P(0) e^{(-z/H)}$ 
  - where H=RT/(Mag), is the scale height; R is gas constant, T is temperature assumed to be constant with altitude, Ma is the molecular weight of air and g is the acceleration of
  - (b) The Barometric law can be applied to explain the sea-breeze circulation. On a sunny daytime, the wind is likely to blow from sea to land. Taiwan is an island, seabreeze is very common during a sunny daytime and can affect the distribution of pollutants. Let's use a two-box model to estimate the mixing ratio of CO(一氧化碳) during daytime with a constant horizontal wind of speed u =2 m/s as shown in Figure 2-2. The two boxes have the same land surface like a square, 10km×10km. The mixing height of the boxes is h = 0.5 km. Box one is an urban area with CO emission rate of E = 0.3 moles/km<sup>2</sup>-s while Box two is a rural area with no local CO emission
  - (i.e., E=0). The mixing ratio of CO,  $C_{co}$ , over the sea  $(x \le 0)$  is assumed to be 0.1 ppmv. Assume that there is no chemical production or chemical loss or deposition for CO.
  - (i) (6pts) Please write the mass balance equations of CO for the two boxes (note: make sure the units are consistent).
  - (ii) (6pts) Assume steady-state for both boxes, please calculate the CO mixing ratio for the two boxes, respectively.
  - (iii) (10pts) Please use a puff(column) model to derive the mixing ratio of CO varies as a function of x.
  - (iv) (4pts) please plot the result of (iii) for x = 0 to 20 km.
- 3. PM2.5 is one of the major air pollutants globally and is composed of various chemical species. EPA-Taiwan provides the emission data on the website for the whole Taiwan. The total emission is 1.2×108 Kg/yr for SO<sub>2</sub> and 4.0×108 Kg/yr for NOx (assuming as NO2 for this exam) over the Taiwan island (此為 台灣總排放量)(Atomic weight: S(32g/mole), N (14g/mole), O (16g/mole), H (1g/mole)).
  - L=10 km L=10 km rural area Figure 2-2
  - (a) Consider only local emissions. We assume that all of the emitted NOx and SO<sub>2</sub> are precipitated back over Taiwan as HNO<sub>3</sub> (1 mole of NOx forms 1 mole of HNO<sub>3</sub>) and H<sub>2</sub>SO<sub>4</sub> (1 mole of SO<sub>2</sub> forms 1 mole of H<sub>2</sub>SO<sub>4</sub>), respectively. The area of Taiwan is 36200 km<sup>2</sup> and the mean precipitation rate is 7 mm day<sup>-1</sup> (based on CWB data). Assume that HNO<sub>3</sub> and H<sub>2</sub>SO<sub>4</sub> are the only impurities in the rainwater,
    - (i) (4 pts) please calculate the total amount of rain over the whole Taiwan per day (in a unit of liter day-1).
    - (ii) (6 pts) please calculate the concentration of HNO3 and H<sub>2</sub>SO<sub>4</sub> in the rain respectively (in a unit of M, 體積其确濃度).
    - (iii) (4 pts) please calculate the resulting rainwater pH (assuming equilibrium with H2SO4 and HNO3, H2SO4 and HNO3 are strong acids and dissociate completely).
    - (iv) (6 pts) In general, the pH of rain over Southern Taiwan is higher than in Northern Taiwan. Please explain the possible reasons by considering only local emissions.
  - (b) (10 pts) Please describe at least two impacts of PM2.5 and acid rain on the environment or ecosystem, respectively.









ρ<sub>a</sub> is the density of air.