國立政治大學 109 學年度 碩士暨碩士在職專班 招生考試試題

考試科目行為考別 (考古年111) 2月7日(五)第2節

Problem 1 (8 points)

Evaluate the improper integral

$$\int_{2}^{\infty} \frac{4x^3 + x - 1}{x^2(x - 1)(x^2 + 1)}.$$

Problem 2 (8 points)

Suppose f(x) has a continuous second derivative f''(x) for $x \in (a, b)$. Find

$$\lim_{h \to 0} \frac{f(x+2h) - 2f(x) + f(x-2h)}{h^2}$$

Problem 3 (8 points)

Find

$$\lim_{x \to 0} \frac{\int_0^x \left(\int_1^{\cos t} \sqrt{8 + u^4} du\right) dt}{x^3}.$$

Problem 4 (8 points)

Evaluate the integral $\int_0^{\pi} sec^2x dx$.

Problem 5 (12 points)

A number a is called a fixed point of a function f(x) if f(a) = a. Prove that if f(x) is differentiable and $f'(x) \neq 1$ for all real number x, then f has at most one fixed point.

Problem 6 (12 points)

Find the area of the surface obtained by rotating $y = \sin x$, $0 \le x \le \pi$, about the x-axis.

一、作答於試題上者,不予計分。

二、試題請隨卷繳交。

考試科目会公養了 系所别 以代京(公)(伊)(青 考試時間 2月7日(五)第2節

Problem 7 (14 points)
Consider the limit

$$\lim_{x \to \infty} n^2 \sum_{k=1}^n \frac{k}{n^4 + k^4}.$$

- (a) Explain carefully why the limit exists. Express the limit as a definite integral.
- (b) Evaluate this definite integral.

Problem 8 (18 points)

- (a) Write down the Maclaurin series of arctan x.
- (b) What is the interval of convergence of the above series?
- (c) Find the sum of the series

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)3^n}$$

Problem 9 (12 points)

Determine whether the series is convergent or divergent.

(a)

$$\sum_{n=1}^{\infty} (-1)^n (e^{\frac{1}{n}} - 1).$$

(b)

註

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^3}$$

一、作答於試題上者,不予計分。