國立政治大學 109 學年度 碩士暨碩士在職專班 招生考試試題

第1頁,共2頁

考試科目基礎數學 系所別統計學系 考試時間 2月7日(五)第一節

1. (30%) Suppose the correlation matrix of a random vector (X_1, X_2, X_3) is given as

$$\Sigma = \left(\begin{array}{rrr} 1.0 & 0.5 & -0.5 \\ 0.5 & 1.0 & 0 \\ -0.5 & 0 & 1.0 \end{array} \right).$$

- (a) (6%) Find the eigenvalues of Σ .
- (b) (9%) Find bases for the eigenspaces associated with each eigenvalues of Σ .
- (c) (6%) Find the diagonal matrix D and the orthogonal matrix P to orthogonally diagonalize Σ .
- (d) (3%) Find the spectral decomposition of Σ .
- (e) (6%) Show that Σ is positive semi-definite and find $\Sigma^{1/2}$.
- 2. (20%) Suppose A is a $n \times n$ symmetric matrix.
 - (a) (10%) Show that vectors corresponding to distinct eigenspaces of A are orthogonal.
 - (b) (10%) Consider the following definition. Show that

$$<\mathbf{u},\mathbf{v}>=\mathbf{u}^TA\mathbf{v}$$

defines an inner product in \mathbb{R}^n .

Definition 1 An inner product on a vector space V is an operation that assigns to every pair of vectors $u, v \in V$ a real number < u, v > such that the following properties hold for all $u, v, w \in V$ and $c \in R$.

$$i. < u, v > = < v, u > .$$

$$ii. < u, v + w > = < u, v > + < u, w >.$$

$$iii.$$
 $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$.

$$\label{eq:constraints} \textit{iv.} \ < \mathbf{u}, \mathbf{u} > \geq 0 \ \textit{and} < \mathbf{u}, \mathbf{u} > = 0 \ \textit{if and only if} \ \mathbf{u} = \mathbf{0}.$$

A vector space with an inner product is called an an inner product space.

試題請隨卷繳交

備

國立政治大學 109 學年度 碩士暨碩士在職專班 招生考試試題

第2頁,共2頁

考試科目基礎數學 系所別統計學系 考試時間 2月7日(五)第一節

- 3. (5 %: 1% for each part) Write down the final answers only.
 - (a) Find $\frac{d}{dx}(x^2 + 3x + 1)$.
 - (b) Find $\frac{d}{dx}e^x$.
 - (c) Find $\frac{d}{dx}(\ln(x) + x\sin(x))$.
 - (d) Find $\frac{d}{dx} \frac{1}{2 + \cos(x)}$.
 - (e) Find $\frac{d}{dx}\sin(\cos(x))$
- Note. For Problems 4-7, you need to show your work in the solutions. Writing down the final answers only for these problems is not enough to receive any points.
- 4. (20%) Let $I_n(t) = \int_0^t x^n \cos(x) dx$ and $J_n(t) = \int_0^t x^n \sin(x) dx$ for $n \ge 0$ and $t \in (-\infty, \infty)$.
 - (a) (14%) Express $I_{n+1}(t)$ and $J_{n+1}(t)$ in terms of $I_n(t)$, $J_n(t)$, n and t.
 - (b) (6 %) Compute $I_0(\pi)$ and $J_0(\pi)$, and then find $I_1(\pi)$ and $J_1(\pi)$ using the expressions in Part (a).
- 5. (10 %) Let $D(r) = \{(x,y) : x^2 + y^2 \le r^2\}$ for r > 0.
 - (a) (7%) Find $\int_{D(r)} e^{-x^2-y^2} d(x,y)$ for r > 0.
 - (b) (3 %) Find $\lim_{r\to\infty}\int_{D(r)}e^{-x^2-y^2}d(x,y)$ based on your answer for Part (a).
- 6. (10 %) Let $f(x,y) = x^2 + \sin(xy) + y^2$. Does f have a local minimum or a local maximum at (x,y) = (0,0)? Justify your answer.
- 7. (5%) Let $\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ for $x \in (-\infty, \infty)$ and $G(x) = \int_x^\infty \phi(t) dt$ for $x \in (-\infty, \infty)$. Find $\lim_{x \to \infty} \frac{xG(x)}{\phi(x)}$.

註

一、作答於試題上者,不予計分。 二、試題請隨卷繳交。