| 考 試 科 目計算機數學 | 系 所 別 資訊科學系 | 考試時間 2月7日(五) 第午節 |
|--------------|-------------|------------------|
|--------------|-------------|------------------|

離散數學: 六大題(1-6), 共 60%

II. 線性代數: 三大題(7-9), 共 40%

請書寫必要的解題過程,僅書寫答案而缺乏必要的過程,無法獲得該題滿分。可使用中文或英文作答,力 求書寫工整,如字跡潦草,無法閱讀,將影響評分。

1. (10%) Find the language recognized by the given deterministic finite-state-machine with no output (or called finite-state-automaton). Final states are indicated in state diagrams by using double circles (ie., s0, s1 and s5 are final states). Write down your answer using the presentation like the following example:

$$\{1\}^*\{0\}\{0\}^* \cup \{0\}\{10,11\}\{0,1\}^*.$$

Here the example says that the languages recognized by a finite-state-automaton are either  $\{1\}^*\{0\}\{0\}^*$  or  $\{0\}\{10,11\}\{0,1\}^*$  where  $\{1\}^*\{0\}\{0\}^*$  is the language starting with any number of 1s followed by a 0 and then followed by any number of 0s. And,  $\{0\}\{10,11\}\{0,1\}^*$  means the language starts with a 0 and then followed by 10 or 11 and finally ends with  $\{0,1\}^*$  which means a bit string with arbitrary length.



- 2. (10%) Use Chebyshev's inequality to find an upper bound on the probability that the number of tails that come up when a biased coin with probability of heads equal to 0.6 is tossed n times deviates from the mean by more than  $\sqrt{n}$ .
- 3. (10%) Suppose that we have prior information concerning whether a random incoming message is spam. In particular, suppose that over a time period, we find that s spam messages arrive and h messages arrive that are not spam.
  - (a) Use this information to estimate p(S), the probability that an incoming message is spam, and  $p(\overline{S})$ , the probability an incoming message is not spam.
  - (b) Let W be the event that an incoming message contains the word w. Use Bayes' theorem and part (a) to estimate the probability that an incoming message containing the word w is spam, where p(w)=p(W|S) is the probability that w occurs in a spam message and  $q(w)=p(W|\overline{S})$  is the probability that w occurs in

## 國立政治大學 109 學年度 碩士班 招生考試試題

第2頁,共2頁

考試科目計算機數學系所別資訊科學系考試時間2月7日(五)第4節

a message that is not spam.

- 4. (10%) The concept of equivalence relation is characterized by three properties.
  - (a). (5%) What are the three properties?
  - (b). (5%) Show that isomorphism of simple graphs is an equivalence relation.
- 5. (10%) The recurrence relation  $a_n = 9a_{n-1} 26a_{n-2} + 24a_{n-3}$  is a linear homogeneous recurrence relation.
  - (a). Find the characteristic root(s) of the recurrence relation.
  - (b). Assume the initial conditions of the relation are  $a_0 = 4$ ,  $a_1 = 15$ ,  $a_2 = 61$ . Find the solution to the recurrence relation.
- 6. (10%)
  - (a). (5%) Find the least positive integer x such that  $x \equiv 28^{200} mod$  19.
  - (b). (5%) Use the Extended Euclidean Algorithm to find the least positive integer x such that  $13x \equiv 1 \pmod{2436}$ .
- 7. (10%) Maximize z where z = 25x + 60y subject to the constraints

$$2y - x \le 5$$
,  $y + 4x \le 25$ ,  $y + x \ge 7$ ,  $x \ge 0$ ,  $y \ge 0$ .

8. (10%) Find a steady state vector for the matrix M where

$$\mathbf{M} = \begin{bmatrix} 0 & 0.5 & 0 \\ 0.5 & 0 & 1 \\ 0.5 & 0.5 & 0 \end{bmatrix}.$$

- 9. (20%) Let  $x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 = 2$ 
  - (a). (5%) Express the equation as a matrix representation of the form  $x^t A x = 2$ . Here  $x^t = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$  is the transpose of the matrix x.
  - (b). (5%) Find the eigenvalues of this matrix A.
  - (c). (5%) Find the orthogonal matrix C that diagonalizes A
  - (d). (5%) Reduce the quadratic form  $x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2$  by the Principal-Axes Theorem for  $R^3$ .