國立政治大學 110 學年度碩士班暨碩士在職專班招生考試試題

第1頁,共2頁

經濟學系 考試時間 2月4日(四)第四節 統計學 系所别 試科

注意事項:

- (1) 請依題號順序作答。
- (2) 不可使用計算機。
- (3) 答題若過程錯誤 (或沒有過程) 但答案正確, 將以「零分」計算。
 - 1. (10%) Let X be a random variable with probability density function given by

$$f(x) = \begin{cases} ke^x, & x < 0, \\ 0 & \text{otherwise.} \end{cases}$$

Find the moment generating function for X.

- 2. (Total 20%) Let Y_1 and Y_2 denote the jointly continuous random variables with joint density function $f_{Y_1,Y_2}(y_1, y_2)$, where $-\infty < y_1, y_2 < \infty$. Please show
 - (1) (10%) $\mathbb{E}[\mathbb{E}[Y_2|Y_1]] = ?$
 - (2) (10%) $Var(Y_2|Y_1 = y_1) = ?$
- 3. (Total 30%) Let Y denote the length of life (in hundreds of hours) of electronic components. These components frequently fail immediately upon insertion into a system. It has been observed that the probability of immediate failure is 1/3. If a component does not fail immediately, the distribution for its length of life has the exponential density function

$$f(y) = \begin{cases} e^{-y}, & y > 0, \\ 0, & \text{otherwise.} \end{cases}$$

- (1) (10%) Find the cumulative distribution function for Y.
- (2) (10%) Evaluate P(Y > 10).
- (3) (10%) Find the mean and variance of Y.

註

國立政治大學 110 學年度碩士班暨碩士在職專班招生考試試題

第2頁,共2頁

考試科目統計學 系所別經濟學系 考試時間 2月4日(四)第四節

注意事項:

- (1) 請依題號順序作答。
- (2) 不可使用計算機。
- (3) 答題若過程錯誤 (或沒有過程) 但答案正確, 將以「零分」計算。
- 4. (Total 40%) Consider a multiple linear regression model as

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + u$$
,

where β_0 is the intercept, β_j is the slope parameter associated with X_j (j = 1, 2, ..., k). Given n observations on $Y, X_1, ..., X_k, \{(y_i, x_{i1}, x_{i2}, ..., x_{ik}) : i = 1, 2, ..., n\}$. Let $\widehat{\beta}_j$, j = 0, 1, ..., k, be the ordinary least squares (OLS) estimates for the parameters of this model, \widehat{u}_i denote the residual associated with the i-th observation, and t_j denote the t-ratio for β_i j = 0, 1, ..., k.

- (1) (10%) Find $\sum_{i=1}^{n} \widehat{u}_i$ and $\sum_{i=1}^{n} \widehat{u}_i x_{ik}$.
- (2) (10%) Under the classical linear model assumptions, please show how to construct the F test statistic for the joint test H_o : $\beta_1 = \beta_2$, $\beta_3 = 0$, and write down the decision rule given the significance level α .
- (3) For $i=1,\ldots,n$, let $y_i^*=(y_i-\bar{y})/\hat{\sigma}_y$, $x_{ij}^*=(x_{ij}-\bar{x}_j)/\hat{\sigma}_j$, $j=1,2,\ldots,k$, be the standardized version of the data, where \bar{y} and $\hat{\sigma}_y$ are the sample mean and sample standard deviation for y over these n observations, and \bar{x}_j and $\hat{\sigma}_j$ are the sample mean and sample standard deviation for x_j , $j=1,2,\ldots,k$. Now we regress y^* on 1 and x_j , $j=1,2,\ldots,k$, to yield the estimated model as

$$y_i^* = \hat{b}_0 + \hat{b}_1 x_{i1}^* + \hat{b}_2 x_{i2}^* + \dots + \hat{b}_k x_{ik}^* + \hat{v}_i, \quad i = 1, 2, \dots, n,$$

where \widehat{b}_j , j = 0, 1, ..., k, are the associated OLS estimates.

- a. (10%) Find the OLS estimates \hat{b}_j , $j=0,1,\ldots,k$ in terms of $\hat{\beta}_j$, $j=0,1,\ldots,k$.
- b. (10%) Find the t-ratio for b_j in terms of t_j , j = 0, 1, ..., k.

註

一、 作答於試題上者, 不予計分。

二、試題請隨卷繳交。