東吳大學 106 學年度碩士班研究生招生考試試題

第1頁,共1頁

系級	巨量資料管理學院碩士學位學程	考試 時間	100 分鐘
科目	統計學	本科 總分	100 分

- 1. (14 \Re) Let the random variable X has a Uniform(0,2) distribution, Y has a Uniform(0,1) distribution and the random variable Z has a Uniform(0, 0.5) distribution.
- (a) 寫出並劃出 the probability density functions of X, Y and Z, f(x), g(y), and h(z) with space (畫在同一個圖上,並標出f, g和 h 三個函數).
- (b) 推導並劃出 and \underline{draw} the cumulative distribution functions of X and Y and Z, i.e. F(x), G(y) and H(z) (畫圖並標出F, G和H三個函數).
- 2. (14分)
- (a) 請用式子或口頭說明中央極限定理 (Central Limit Theory)的內涵及其用途
- (b) Let \overline{X} be the mean of a random sample of n = 25 currents (in milliamperes) in a strip of wire in which each measurement has a mean of 15 and variance of 4. Calculate the approximate probability $P(\overline{X} < 15.784) = ?$.
- 3. (14 分) Let X_1, X_2, \cdots, X_n denote a series of random variables from a distribution with unknown parameter θ . 請說明概似函數 (likelihood function) 與聯合機率密度函數 (joint probability density function) 之相同處與相異處.
- 4. (14 分) 在進行統計假設檢定(hypotheses testing)以決定是否拒絕虛無假設(null hypothesis)時,經常會使用到 α (the significance level or tolerance level) 和 p-value 兩個數字之間的比較,請用文字敘述說明或公式或圖形,說明這兩個數字的意涵及其比較的背後邏輯
- 5. (14 \Re) Let X be a random variable associated with a Bernoulli trial, i.e. X has a Bernoulli distribution with the probability of success p.
- (a) $(4 \ \%)$ Write down the probability mass function of X.
- (b) (5 分) Derive the expected value of X.
- (c) (5 分) Derive the variance of X.
- 6. (14 \mathcal{H}) Prove the Theorem: If $X \sim N(\mu, \sigma^2)$, then $Z = (X \mu)/\sigma$ is N(0, 1).
- 7. (16 分) Assuming that X_1 is $N(\mu_1, \sigma_1^2)$ with n_1 sample and X_2 is $N(\mu_2, \sigma_2^2)$ with n_2 sample. 寫出下列各虛無假設的檢定統計式及其所用以判斷檢定結果的分配
- (a) H_0 : $\mu_1 = 60$ (when σ_1^2 is unknown)
- (b) $H_0: \mu_1 = \mu_2$ (when X_1 and X_2 are independent)
- (c) $H_0: \mu_1=\mu_2$ (when X_1 and X_2 are paired data taken from same subject and hence $n_1=n_2=n$)
- (d) $H_0: \sigma_1^2 = \sigma_2^2$