逢甲大學108學年度碩士班考試入學試題 | | | | 編 | 號:24 | 科目代碼:308 | |----|-----|------|--------|------|----------| | 科目 | 電子學 | 適用系所 | 電機工程學系 | 時間 | 90分鐘 | ※請務必在答案卷作答區內作答。 共 2 頁 第 1頁 - 1. For the circuits shown in Figure 1 using ideal diodes, find the values of the labeled voltages and currents. (20%) - 2. For the circuit in Figure 2, find the V_B , V_E , and V_C for R_B = 100 k Ω and 1 k Ω . Let β = 100. (15%) - 3. For the common-emitter amplifier shown in Figure 3, let $V_{cc}=15V$, $R_1=27~k\Omega$, $R_2=15~k\Omega$, $R_E=2.4~k\Omega$, $R_C=3.9~k\Omega$. The transistor has $\beta=100$ and $V_A=100V$. Calculate the dc bias current I_C . If the amplifier operates between a source for which $R_{sig}=2~k\Omega$ and a load of 2 k Ω , replace the transistor with its hybrid- π model, and find the value of R_{in} , and the overall gain v_0/v_{sig} . Figure 1 Figure 2 Figure 3 - 4. Figure 4 shows a current mirror, (a) what the operation region of Q1 and Q2 should be ? (Cutoff, Triode or Saturation region?) (5%) (b) Find the I_o , if Q1 and Q2 are matched with channel length $L=0.4~\mu m$, channel width $W=4~\mu m$, $\mu_n C_{ox}=100~\mu A/V^2$, $V_{DD}=12~V$, $V_{GS}=2~V$, $V_t=1~V$ and $R=20~k\Omega$. (10%) [Hint: $I_D=0.5\mu_n C_{ox}~(V_{GS}-V_t)^2 W/L$]. - 5. (a) Find voltage gain $A_v = Vo/Vi$, for an ideal op amp shown in Figure 5. (10%) (b) Assume that the op amp is not ideal and has an open-voltage gain A_o , derive the expression for Av = Vo/Vi. (5%) - 6. Figure 6 shows a single stage MOSFET amplifier with V_{DD} = 15 V, R_{G1} = 10 M Ω , R_{G2} = 5 M Ω , R_D = 7.5 k Ω , R_S = 6 k Ω , R_I = 50 k Ω , and R_L = 10 k Ω . Also C_s = 5.8 μ F, C_{C1} = 90 nF, C_{C2} = 2.56 μ F. Let V_t = 1 V, $\mu_n C_{ox} W/L$ = 2 mA/V² and V_{GS} = 2 V. (a) Draw the dc equivalent circuit. (5%) (b) Find the dc current I_D , and dc voltage V_G , V_D . (5%) (c) Draw the small-signal equivalent circuit. (5%) (d) Find the voltage gain, Av = Vo/Vs. (5%) Figure 4 Figure 5 Figure 6