編號: 58

國立成功大學 108 學年度碩士班招生考試試題

系 所:太空與電漿科學研究所

考試科目:應用數學 考試日期:0223,節次:2

第1頁,共1頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. Please answer the following questions:

(a)
$$\frac{d}{dx} y^{x^{1/3}} = ?$$
 (5pts)

(b)
$$\frac{d}{dx} \int_{x^2}^{0} dy G(x, y) = ? (5pts)$$

(c)
$$\frac{d}{dx} \int_0^{x^3} dy G(x, y) = ? (5pts)$$

(d) What are the first three terms of the Taylor series of $\cos x$ for x < 1? (5pts)

2. (a) Solve the differential equation

$$\frac{dV}{dx} = \pm \frac{1}{2} \frac{\sin x}{\sqrt{k^2 - \sin^2(x/2)}},$$

where $k^2 \ge 0$ is a parameter. (10pts)

(b) Determine the integration constant by imposing that V = 0 when $k^2 = \sin^2(x/2)$ for $k^2 \le 1$, and that V is continuous at $k^2 = 1$. (5pts)

(c) Give a rough sketch of V as a function of x when k^2 varies from 0, to 1 to a number larger than 1. (5pts)

3. There is a two-dimensional vector $\vec{T} = (x - y)\hat{x} + (x + y)\hat{y}$ in three-dimensional (x,y,z) Cartesian coordinates, where the unit vectors in x, y, z directions are \hat{x} , \hat{y} , and \hat{z} respectively, please calculate

(a) $\vec{\nabla}T$ (5pts)

(b) $\vec{\nabla} \times \vec{T}$ (5pts)

(c) $\hat{y} \hat{z} \cdot \vec{\nabla} \times \vec{T}$, where $\hat{y} \hat{z}$ is a tensor and \cdot denotes dot product. (5pts)

4. Perform the integral $\int_{-\infty}^{\infty} dx \frac{1}{(x^2+1)^2}$ for real x = 0.00 (15pts)

5. Please find the Fourier series of a function $f(x) = \sin^3 x + \cos^2 x$. (10pnts)

6. Please find all three cubic roots of the following numbers: -8 and 1+i. Here, $i = \sqrt{-1}$. (10pnts)

7. Please show that $g = e^{i(kx - \omega t)}$ is a solution to Eq.(1) if frequency ω is a function of the wave vector k. Find that relation. (10pnts)

$$\frac{\partial^2 f}{\partial t^2} = c^2 \frac{\partial^2 f}{\partial x^2}.$$
 (1)