題號: 54

國立臺灣大學 108 學年度碩士班招生考試試題

科目:高等微積分

節次: 1

54 題號:

1. (10 points)

Let I = [a, b]. Construct an explicit C^{∞} function f(x) on \mathbb{R} such that f(x) > 0 for any $x \in (a, b)$ and f(x) = 0 otherwise. (you have to prove your function is smooth)

Suppose f(x) is a continuous function on [a, b] and $\phi(x)$ is increasing and of C^1 on [a, b]. Show that there exists a point $c \in [a, b]$ such that

$$\int_a^b f(x)\phi(x)dx = \phi(a)\int_a^c f(x)dx + \phi(b)\int_c^b f(x)dx.$$

3. (20 points)

Let $f(x,y) = \frac{x^2y}{x^2+y^2}$ if $(x,y) \neq (0,0)$ and f(0,0) = 0. (a) Show that f is continuous.

- (b) Show that the directional derivatives $\partial_u f(0,0)$ all exist and compute them.
- (c) Is f differentiable at (0,0)? Justify your answer.

4. (20 points)

- Define $g(x,y,z)=(x^2+y^2+z^2)^{-\frac{1}{2}}$ for $(x,y,z)\neq (0,0,0)$. (a) Compute the value of $\iint_S (\partial g/\partial n) dA$ where S is the unit sphere centered at origin and nis its unit outward normal vector.
- (b) Let R be a region with piecewise smooth boundary whose interior contains the origin. Show that the value $\iint_{\partial R} (\partial g/\partial n) dA$ is a fixed constant, i.e. independent of R.

5. (20 points)

- (a) Suppose f(x) is Riemann integrable on [a,b]. Does $\lim_{n\to\infty}\int_a^b f(x)\sin(nx)dx$ exist? Prove or disprove your result.
- (b) Let $\{c_n\}$ be the sequence $\{n^2\}$. Does $\lim_{n\to\infty}\int_1^2\cos^2(nx+c_n)dx$ exist? Prove or disprove your result. If the limit exists, find the value.

6. (10 points)

Define the sequence $\{e_n\}$ by $e_1 = 1$ and $e_{n+1} = (n+1)(e_n+1)$.

- (a) Let $s_n = \sum_{k=0}^n \frac{1}{k!}$. Show that $e_n = n! s_{n-1}$. (b) Show that $s_n = \prod_{k=1}^n \frac{e_k+1}{e_k}$ and find the value of $\prod_{k=1}^\infty \frac{e_k+1}{e_k}$.

試題隨卷繳回