題號: 295 國立臺灣大學101學年度碩士班招生考試試題

科目:統計學(G)

節次: 6

題號: 295 共 / 頁之第 / 頁

1. Suppose that E(X) = 5 and E[X(X-1)] = 27.5 What is (10%)

(a) $E(X^2)$? (b) V(X)?

2. Compute the following binomial probabilities directly from the formula for b(x; n, p). (10%)

(a) b(3; 8, 0.6) (b) $P(3 \le X \le 5)$ when n = 8 and p = 0.6

- 3. The flow rate $y(m^3 / \min)$ in a device used for air quality measurement depends on the pressure drop x (inch of water) across the device's filter. Suppose that for x values between 5 and 20, the two variables are related according to the simple linear regression model with true regression line y = -0.12 + 0.095x. (20%)
 - (a) What is the expected change in flow rate associated with a 1-inch increase in pressure drop?

(b) What change in flow rate can be expected when pressure drop decreases by 5 inches?

(c) What is the expected flow rate for a pressure drop of 10 inches?

- (d) Suppose that the standard deviation of the flow rate is $\sigma_y = 0.025 \, m^3 / \text{min}$, and consider a pressure drop of 10 inches. What is the probability that the observed value of flow rate will exceed $0.835 \, m^3 / \text{min}$?
- 4. A random variable X is distributed with the following gamma density with parameter $(\alpha = 40, \beta)$. (20%)

$$f_{\chi}(x;\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, \ x \ge 0, \ \alpha > 0, \ \beta > 0$$

A random sample of size 10 from the above density resulted in a sample mean of 82. Calculate the maximum likelihood estimator of β based on these observed data.

5. The moment generating function of a gamma random variable X (density function shown in problem 4) can be expressed by the following equation. (20%)

 $m_X(t) = (1 - \beta t)^{-\alpha}$ for $t < 1/\beta$.

The exponential distribution is a special case of the gamma distribution with $\alpha = 1$. Prove that the sum of n independent identically distributed exponential random variables with a common parameter β is a gamma random variable with parameters $\alpha = n$ and β .

6. A random sample of size n = 100 is taken from a population with unknown mean μ and standard deviation $\sigma = 5$ grams. The sample mean is $\bar{x} = 28.4$ grams. Conduct the hypotheses test $H_0: \mu \ge 30$, $H_1: \mu < 30$ at level of significance $\alpha = 0.05$. (20%)

Table of cumulative probability for standard normal distribution $Z(P(Z \le z) = p)$

Z	1.05	1.15	1.25	1.35	1.45
p	0,8531	0.8749	0.8944	0.9115	0.9265
z	1.55	1.65	1.75	1.85	1.95
p.	0.9394	0.9505	0.9599	0.9678	0.9744
z	2:05	2.15	2.25	2.35	2.45
p	0.9798	0.9842	0.9878	0.9906	0.9929
z	2.55	2.65	2.75	2.85	2.95
p	0.9946	0.9960	0.9970	0.9978	0.9984