國立臺灣科技大學 108 學年度碩士班招生試題

系所組別:化學工程系碩士班 科 目:化工熱力學與動力學

(總分為 100 分)

1. (17%) The liquid phase reaction $A + B \rightarrow C + D$ was carried at 25 °C in a solution of B (C_{Bo} =0.5 mol/dm³). The reaction is made irreversible by precipitating one of the products. The reaction is first order in B. The concentration of A was measured as a function of time as shown below. Please find the rate law expression, -r_A, of this reaction.

					71, 01 0110 11	
Time (min)	0	50	100	150	200	250
C _A (mmol/ dm ³)	50	38	30.6	25.6	22.2	19.5
-dC _A /dt	3.0	1.86	1.2	0.8	0.5	0.47

2. (17%) The data of C_{A0}/-r_A versus X_A for a liquid phase decomposition of reactant A is shown below. The volumetric flow rate is 30 L/min. Please design a configuration of reactor(s) connected in series with a minimum reactor volume for the 0.9 final conversion. Please use Simpson's rule to evaluate the integrals in your calculation.

C _{A0} /-r _A (min)	15	20	40	60	45	25	10	15	40	70
X _A	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9

Simpson's rule:
$$\int_{X_0}^{X_2} f(x) dx = \frac{h}{3} [f(X_0) + 4f(X_1) + f(X_2)] , \text{ where } h = \frac{X_2 - X_0}{2} ,$$

$$X_1 = h + X_0$$

- 3. Considering to design a reactor to run a gas-phase, elementary and reversible reaction, $2C_6H_6 \longleftrightarrow C_{12}H_{10} + H_2$. At equilibrium, the rate of reaction is identically zero for all species. The rate of the above reaction doubles for a 10 °C increase in temperature (T) occurs only at a specific temperature for a given activation energy.
 - (a) (8%) Develop a relationship between the temperature and activation energy (Ea) for the above reaction. Please show your answer with the form of Ea as a function of T.
 - (b) (8%) Determine the activation energy and the pre-exponential factor from the following data. Where k is a rate constant.

k	0.001	0.005
T (°C)	00.0	100.0

國立臺灣科技大學 108 學年度碩士班招生試題

系所組別:化學工程系碩士班 科 目:化工熱力學與動力學

(總分為 100 分)

- 4.(5%)Frequently the first law of thermodynamics is expressed as $\Delta U = Q W$. Explain the limitations, i.e., assumptions, of this equation.
- 5.(20%)A flow process produces CO₂ as 75 mol % liquid CO₂ and the rest vapor at 60 °F for use in fire extinguishers. In this process, CO₂ at 20 psia and 60 °F is compressed in two steps: first to 100 psia and then to its final pressure. The gas is cooled to 60 °F before entering the second compressor. Assume both compressors operate adiabatically and reversibly. Using the attached P-H diagram for CO₂, estimate the amount of work required in the process and the required cooling capacity. Compare your results with those obtained when assuming CO₂ as an ideal gas? (5%)For putting out fire, a CO₂ fire extinguisher (75 mol % liquid CO₂ and the rest vapor, stored at 60 °F) is discharged to atmospheric pressure (14.7 psia), what is the state of the exit stream?
- 6. (10%) Derive the Clayperon equation for describing phase equilibrium starting from the equilibrium criteria. The sublimation pressure of dry ice (CO₂) as a function of temperature is shown below and its molar volume is 2.8x10⁻⁵ m³/mol. Determine the heat of sublimation of dry ice at 190 K. Estimate the fugacity of solid CO₂ at 190 K and 200 bar.

T (K)	130	155	185	194.5	205
P (kPa)	0.032	1.674	44.02	101.3	227

7.(10%)What volumes of pure ethanol and pure water must be mixed in order to produce 100 cm³ mixture containing 50 % (mass) ethanol? If an extra 1 cm³ pure ethanol is added to the mixture due to a careless measurement, by how much will the volume of this mixture change?

P-H diagram of CO₂

