Please show all your work.

- 1. Define $e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$.
 - (a) Let $P^{-1}AP = D$ be a diagonal matrix. Prove that $e^A = Pe^DP^{-1}$. (10%)

(b) Let
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
. Compute e^{A} . (7%)

- Label the following statements as true or false. In each part, V and W are finite-dimensional vector spaces (over F), A, B are matrices.
 - (a) If $T,U:V\to W$ are both linear and agree on a basis for V, then T=U.
 - (b) If $m = \dim(V)$ and $n = \dim(W)$, β, γ are ordered basis of V and W, respectively,

and T is a linear transformation, then $[T]_{B}^{\gamma}$ is an $m \times n$ matrix.

- (c) $A^2 = I \Rightarrow A = I$ or A = -I.
- (d) AB = I implies that A and B are invertible.
- (e) Let T be a linear operator on a finite-dimensional vector space V. Let β and α be ordered basis of V, and let Q be the change of coordinate matrix that changes α -coordinates into β -coordinates. Then $[T]_{\beta} = Q[T]_{\alpha}Q^{-1}$. (20%)

3. Let
$$A = \begin{bmatrix} 2 & -1 & 0 & 1 \\ 0 & 3 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 3 \end{bmatrix}$$

- (a) Find the characteristic polynomial of A. (6%)
- (b) Find a Jordan canonical form J and an invertible matrix Q such that $J = Q^{-1}AQ$. (10%)
- A matrix $M \in M_{n\times n}(C)$ is called skew-symmetric if M' = -M. Prove that if M is skew-symmetric and n is odd, then M is not invertible.

. What happens if n is even? (15%)

- (a) Let V = P(R) with the inner product $\langle f, g \rangle = \int_{1}^{t} f(t)g(t)dt$. Use Gram-Schmidt process to obtain an orthonormal basis for $P_2(R)$ from the standard basis $\{1, x, x^2\}$. (10%) (b) Let $V = P_3(R)$ with the inner product $\langle f, g \rangle = \int_1^L f(t)g(t)dt$. Compute the orthogonal projection of $f(x) = x^3$ on $P_2(R)$. (7%)
- Let F be a field that is not of characteristic 2. Define $W_i = \{A \in M_{n \times n} : A_{ij} = 0 \text{ whenever } i \le j\}$ and W_2 to be the set of all symmetric $n \times n$ matrices with entries from F. Both W_1 and W_2 are subspaces of $M_{n \times n}(F)$. Prove that $M_{n\times n}(F) = W_1 \oplus W_2$. (15%)