

}

系所: 資工系

科目:計算機概論(2)

1. (5%) Consider the following recursive program code. What will happen when the code is compiled and executed?

```
void my recursive_function()
{
   my recursive function();
}
int main()
{
   my_recursive_function();
   return 0;
}
2. (5%) How many times is the recursive function called, when the following code is executed?
void my_recursive_function(int n)
     if(n == 0)
     return;
     printf("%d ",n);
     my_recursive_function(n-1);
int main()
{
     my_recursive_function(10);
     return 0;
```

3. (10%) (a) Consider the following graph. Find the minimum spanning tree of the graph. (5%) (b) Find all shortest distances from B to other nodes.

系所: 資工系

科目:計算機概論(2)

- 4. (10%) (a) Construct a Binary Search Tree by inserting the following sequence of numbers: 10,12,5,4,20,8,7,15 and 13.
 - (5%) (b) What is the visiting sequence of the depth-first search (DFS)?
- 5. (10%) A 12-bit Hamming code word containing 8 bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written into memory if the 12-bit word read out is as follow: 010011101010
- 6. For a direct-mapped cache design with a 32-bit address, the following bits of the address are used to access the cache.

Tag	Index	Offset
31-10	9-4	3-0

- (a) (5%) What is the size of each cache block (in bytes)?
- (b) (5%) How many entries does the cache have?
- (c) (5%) In the cache, how many bits are used to store tag information?
- 7. (5%) How does a compiler convert a high-level program into an executable file, which a computer can run? Please put the following items into the correct order.
 - (a) Translate the assembly program into binary instruction (object files)
 - (b) Compile the source file into an assembly language program
 - (c) Combine a collection of object and library files into an executable file
- 8. (10%) What is the average time to read a 512-byte sector for a typical disk rotating at 15,000 RPM (Revolutions Per Minute)? The average seek time is 4ms, the transfer rate is 100MByte/sec, and the controller overhead is 0.2 ms. Assume that the disk is idle so that there is no waiting time. (Hint: Average read time = seek time + rotational latency + transfer time + controller overhead)
- 9. (10%) Assume a system uses five protocol layers. If the application program creates a message of 200 bytes and each layer adds a header of 10 bytes to the data unit, what is the efficiency of the system? The efficiency is defined as the ratio of application-layer bytes to the number of bytes transmitted.
- 10. (10%) Three processes (A, B, C) are running concurrently. Process A has acquired File1 but needs File2. Process B has acquired File 3, but needs File 1. Process C has acquired File 2 but needs File3. Is this a deadlock situation? Please draw a diagram to explain these processes.