系所:

科目:統計學 經營管理研究所(無組別) 是否使用計算機:是 考試時間:100分鐘

本科原始成績:100分

#### I. (60%)MULTIPLE CHOICE QUESTION

所有的答案請寫在答案卷,答案寫法如下列所示:

All answers must be written on the answer sheet

for example:

| 1 | a | 6  | a | 11 | 16 |  |
|---|---|----|---|----|----|--|
| 2 | b | 7  | b | 12 | 17 |  |
| 3 | c | 8  | С | 13 | 18 |  |
| 4 | d | 9  | d | 14 | 19 |  |
| 5 | a | 10 | a | 15 | 20 |  |

- 1. Which of the following statements about standard normal distribution is **not** true?
- a) It has a zero mean.
- b) The variance is 1.
- c) It is a symmetric distribution.
- d) No matter how large is the sample size, it can always be used to do hypothesis testing.
- 2. Which of the following distributions is a symmetric distribution?
- a) Chi-squared distribution
- b) t distribution
- c) binary distribution
- d) Poisson distribution
- 3. The skewness of the distribution of a standard random variable can evaluated by \_\_\_\_\_ of the random variable.
- a) first moment
- b) second moment
- c) third moment
- d) forth moment
- 4. If average time interval between two buses is 10 minutes, the probability of waiting time X

less than t minutes is  $P(X \le t) = 1 - e^{-\frac{t}{10}}$ , the variance of X is

- a) 1
- b) 10
- c) 90

是否使用計算機:是

系所:

科目:統計學

經營管理研究所(無組別)

考試時間:100分鐘

本科原始成績:100分

- d) 100
- 5. There is a game as follows: The player tosses a fair coin until "head" happens, and wins  $2^n$  if he tosses n times. If John with a utility function as  $\ln M$  want to play the game where M is the money he wins, his expected utility is
- a)  $2^n \ln 2$
- b) 2 ln 2
- c) n
- d)  $\infty$
- 6. A random variable  $Y = X \frac{X \mu}{\sigma}$ , where X is also a random variable with mean  $\mu$  and variance  $\sigma^2$ , has Var(Y) =
- a)  $\sigma^2$
- b)  $\sigma^2 1$
- c)  $(\sigma 1)^2$
- d)  $\sigma^2 + 1$
- 7. Following 6., the correlation coefficient between X and Y (i.e. Corr(X,Y)) is
- a) 0
- b) 0.2
- c) 0.5
- d) 1
- 8. Which of the following statements about simple linear regression equation is true?
- a) If the coefficient of determination is zero, there is no relation between dependent variable and independent variable.
- b) To test the significance of the slope, the sampling distribution of the slope estimator must be a normal distribution is not necessarily required.
- c) When the distribution of the disturbance term is not normal distribution, the OLS estimators will no longer be unbias.
- d) If the value of estimated intercept is very small and near zero, then the intercept will not be significantly different from zero.

系所: 科目:統計學

經營管理研究所(無組別) 是否使用計算機:是

考試時間:100分鐘 本科原始成績:100分

9. Which of the following statements about simple linear regression is true?

- a) If all the Gauss-Markov assumptions hold, the OLS \ BLUE and MLE estimators are all the same.
- b) If the dependent variable is housing price and the independent variable is family income, a small variance of family income is more good.
- c) If the slope is not significant, there is no relation between dependent and independent variables.
- d) t-test is the only test that can be used to test the significance of the slope.
- 10. If the population is  $Y = \beta X + \varepsilon$  and  $\varepsilon \sim N(0, \sigma^2)$ , there are three estimators for estimating

$$\beta: \ \widetilde{\beta}_1 = \frac{\overline{Y}}{\overline{X}}, \ \widetilde{\beta}_2 = \frac{\sum X_i Y_i}{\sum X_i^2} \text{ and } \ \widetilde{\beta}_3 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2}, \text{ which of them is/are unbias?}$$

- a) only  $\tilde{\beta}_1$
- b) only  $\tilde{\beta}_1$  and  $\tilde{\beta}_2$
- c) only  $\tilde{\beta}_2$  and  $\tilde{\beta}_3$
- d) all.
- 11. Following 10., which one of the three estimators has a smallest variance?
- a)  $\tilde{\beta}_1$
- b)  $\tilde{\beta}_2$
- c)  $\tilde{\beta}_3$
- d) all of the three.
- 12. The simple regression equation is  $\hat{Y} = \hat{\alpha} + \hat{\beta}X$ , we have 30 samples summarized as follows:

$$\sum X_i = 120 \cdot \sum Y_i = 21 \cdot \sum Y_i^2 = 110 \cdot \sum X_i Y_i = 320$$
 and  $\sum X_i^2 = 1800$ . The  $R^2$  of the

regression equation is

系所:

科目:統計學

經營管理研究所(無組別)

是否使用計算機:是

考試時間:100分鐘

本科原始成績:100分

- a) 0.34
- b) 0.44
- c) 0.54
- d) 0.74
- 13. When the units of both the dependent and independent variables is changed, which of the original regression equation will not be affected in the new regression equation?
- a) slope
- b) intercept
- c) residual sum of square
- d) correlation coefficient of explain and explained variable.
- 14. Which of the following statements is true?
- a) An unbiased estimator must be a consistent estimator.
- b) An unbiased estimator is always more efficient than a bias estimator.
- c) A consistent estimator is always more efficient than an unbias estimator.
- d) An unbias estimator is not necessarily consistent, a consistent estimator is not necessarily unbias.

.

15. The probability density function of a discrete random variable x is:

$$f(x=1) = 1 - \frac{1}{2n}, f(x=n) = \frac{1}{2n}.$$

 $p \lim x =$ 

- a) 0
- b)  $1 \frac{1}{2n}$
- c)  $\frac{1}{2n}$
- d) 1
- 16. Which of the following statements about hypothesis testing is true?
- a) The higher the confidence level, the more easy to reject null hypothesis.
- b) When p-value rejects null hypothesis in a two-tailor test, it will also reject null hypothesis in an one-tailor test.
- c) The more high the significant level in a two-tailor test, the more easy to reject null hypothesis.

系所:

科目:統計學

經營管理研究所(無組別)

是否使用計算機:是

考試時間:100分鐘

本科原始成績:100分

- d) p-value is unrelated to the parameters of the population.
- 17. Which of the following statements is not true?
- a) More samples must lead to a higher variance.
- b) The central limit theorem tells that, the sample distribution will approach normal distribution when the sample size is large enough.
- c) More samples does not necessarily change the result of hypothesis testing.
- d) The variance of sampling distribution of a consistent estimators will approach zero when the sample size is large enough.
- 18. Which of the following statements on binary distribution is true?
- a) It is a symmetric distribution.
- b) When the population is a binary distribution, we can not do hypothesis testing.
- c) When the distribution of a random variable is a binary distribution, all the value of random variable must be positive.
- d) When n samples is collected from a binary distribution population, if n is high enough, the sampling distribution approaches normal distribution.
- 19. Consider the following regression model:  $Y = \alpha + \beta X + \varepsilon$ , which of the following is a property of Ordinary Least Square (OLS) estimates of this model and their associated statistics?
- a) The point of sampling mean  $(\overline{X}, \overline{Y})$  always lies on the OLS regression line.
- b) The sample covariance between the regressors and the OLS residuals is positive.
- c) The sum of the OLS residuals is negative.
- d) The sample average of the OLS residuals is positive.
- 20. The joint probability density function of X and Y is as follows:

$$f_{XY}(a,b) = \begin{cases} h(a+b) \\ 0 \end{cases}, \quad \text{if} \quad \begin{cases} 0 \le a \le 4, 0 \le b \le 4 \\ otherwise \end{cases}$$

$$F_{XY}(2,2) =$$

- a)  $\frac{1}{2}$
- b)  $\frac{1}{4}$

系所:

科目:統計學

經營管理研究所(無組別)

是否使用計算機:是

考試時間:100分鐘

本科原始成績:100分

- c)  $\frac{1}{8}$
- d)  $\frac{1}{16}$
- II. (16%)We want to know the relation between Y (dependent variable) and X (dependent variable) and have 30 samples summarized as follows:

$$\sum X_i = 120 \cdot \sum Y_i = 21 \cdot \sum Y_i^2 = 110 \cdot \sum X_i Y_i = 320$$
 and  $\sum X_i^2 = 1800$ .

Please answer the following questions.

- (a) Var(2X Y)(4%)
- (b) If the population equation is  $Y = \alpha + \beta X + \varepsilon$ , the regression function is  $Y_i = \hat{\alpha} + \hat{\beta} X_i$ , what are the OLS estimators  $\hat{\alpha}$  and  $\hat{\beta}$ ? (4%)? Is  $\hat{\beta}$  significantly different from zero under a 5% significant level? (4%)
- (c) If we develop another regression function as  $y_i = \hat{\alpha}' + \hat{\beta}' x_i$ , where  $y_i = Y_i \overline{Y}$ ,  $x_i = X_i \overline{X}$ , what are the OLS estimators  $\hat{\alpha}'$ 與 $\hat{\beta}'$ ? (4%)

Hint: 
$$t_{27}^c = 2.052 \cdot t_{28}^c = 2.048 \cdot t_{29}^c = 2.045 \cdot t_{30}^c = 2.042$$
, where  $P(-t^c \le t \le t^c) = 0.95$ ;

$$F_{1,27}^c = 4.21 \cdot F_{1,28}^c = 4.20 \cdot F_{1,29}^c = 4.18 \cdot F_{1,30}^c = 4.17 \cdot F_{2,27}^c = 3.35 \cdot F_{2,28}^c = 3.34 \cdot F_{2,29}^c = 3.33 \cdot F_{2$$

$$F_{2,30}^c = 3.32$$
, where  $P(F \le F^c) = 0.95$ .

III. (8%) The probability density function of a continuous random variable x is:

$$f(x) = \begin{cases} \frac{3x^2}{8} \\ 0 \end{cases}, \quad \text{if } \begin{cases} 0 \le x \le 2 \\ otherwise \end{cases}.$$

If a new random variable is  $y = 4x^2 - 2$ , what is

- (a) the probability density function f(y)? (4%)
- (b) the cumulative probability  $F(0 \le y \le 2)$ ? (4%)

系所:

科目:統計學

經營管理研究所(無組別)

是否使用計算機:是

考試時間:100分鐘

本科原始成績:100分

IV. (16%) The following table is the probability distribution of  $X \cdot Y \cdot Z$ , where f(X,Y,Z) is the probability.

| X | Y | Z | f(X,Y,Z) |
|---|---|---|----------|
| 2 | 3 | 4 | 0.1      |
| 2 | 3 | 6 | 0.3      |
| 2 | 6 | 4 | 0        |
| 2 | 6 | 6 | 0.1      |
| 4 | 3 | 4 | 0.2      |
| 4 | 3 | 6 | 0.1      |
| 4 | 6 | 4 | 0        |
| 4 | 6 | 6 | 0.2      |

Please answer the following questions.

- (a) What are the respective probability distributions of X and Y?(4%)
- (b) Are X and Y independent? (4%)
- (c) Covariance of X and Y (i.e. Cov(X,Y)) is ? Correlation coefficient of X and Y (i.e. Corr(X,Y)) is ? (4%)
- (d) If W = X + Y + Z, E(W) = ? Var(W) = ?(4%)