國立高雄大學 108 學年度研究所碩士班招生考試試題

系所:應用數學系

科目:線性代數 考試時間:100分鐘 身份別:一般生應用數學組、在

職生應用數學組

是否使用計算機: 否

本科原始成績: 100分

- 1. (6%) Consider a 3×3 matrix $A = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$ and a vector $\vec{b} = \begin{pmatrix} 1 \\ 0 \\ c \end{pmatrix}$. Find the value of c that gives a consistent linear system of $A\vec{x} = \vec{b}$.
- 2. (6%) Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be a linear transformation defined by $T(p(x)) = p(x) + (x+1)\frac{dp(x)}{dx}$, and $\beta = \{1, x, x^2\}$ be a basis for $P_2(\mathbb{R})$. Find the matrix representation of T relative to the given basis β .
- 3. (6%) Let A be a 3×3 matrix with $\det(A) = -2$, and B be another 3×3 matrix satisfying $\det(-2A^{-1}B^2) = 36$. Find the determinant of B.
- 4. (6%) Find the volume of the parallelogram formed by the three vectors $\vec{a} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ and $\vec{c} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$ in \mathbb{R}^3 .
- 5. (6%) Consider a 2×2 matrix $C = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$ and assume that $\vec{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector of a 2×2 matrix A. If B is similar to A with $B = C^{-1}AC$, find an eigenvector of B.
- 6. (6%) Find the projection of $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ on the hyperplane $x_1 x_2 x_3 x_4 = 0$ in \mathbb{R}^4 .
- 7. (6%) Let $A = \begin{pmatrix} -3 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -3 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -2 \end{pmatrix}$, calculate $(A + 2I)^4(A + 3I)^3$.
- 8. (10%) Let $\vec{y}(t)$ be a vector valued function satisfying $\frac{d}{dt}\vec{y}(t) = A\vec{y}(t)$ where $A = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$ and $\vec{y}(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Find the general solution of $\vec{y}(t)$.
- 9. Prove or disprove the following statements:
 - (a) (6%) If W_1 and W_2 are two subspaces of \mathbb{R}^n , then $W_1 \cup W_2$ is a subspace of \mathbb{R}^n .
 - (b) (6%) \mathbb{R}^n is a trivial subspace of itself. If \vec{v} is a nonzero vector in \mathbb{R}^n , then the subset $\mathbb{R}^n \setminus \vec{v}$ (means that \mathbb{R}^n removes the vector \vec{v}) is still a subspace of of \mathbb{R}^n .
 - (c) (8%) If A is a 2×2 matrix satisfying $A^2 = 2A I$, then A is diagonalisable.
 - (d) (8%) Let $\vec{v} \in \mathbb{R}^m$ and $\vec{w} \in \mathbb{R}^k$ are two nonzero column vectors, and $A = \vec{v}\vec{w}^T$, and $B = \vec{w}\vec{v}^T$. If m > k, then nullity(A) < nullity(B).
 - (e) (10%) Assume that $A \in \mathbb{C}^{n \times n}$. If A is Hermitian, then all eigenvalues of A are real.
 - (f) (10%) If A is a diagonalisable real matrix satisfying $A^3 = A$, then $rank(A) = trace(A^2)$.