國立中正大學 108 學年度碩士班招生考試試題

科目名稱:材料力學

本科目共2頁第1頁

系所組別:機械工程學系-甲組

- 1. (a) Draw the conventional stress-strain diagram, and explain the behaviors in different regions. (15%)
 - (b) Describe and explain the fatigue behaviors for ductile and brittle materials (10%)
- 2. Two bars, each made of a different material, are connected and placed between walls when the temperature is $T_1 = 10^{\circ}C$. Determine the force exerted on the (rigid) supports (the walls) when the temperature becomes $T_2 = 20^{\circ}C$. The material properties and cross-sectional area of each bar are given in Figure 1, where E is the Young's modulus, α is the thermal expansion coefficient, and A is the cross-sectional area. (25%)

Figure 1

- 3. A circular solid cantilever bar has a diameter of 0. 12 m subjected to a downward loading of 2.0 kN, a torsional torque of 18 kN·m and a bending moment of 8.1 kN·m on the free end as shown in Figure 2.
 - (a) Determine the stresses at point A and point B on top and on right side of cross-section a. Plot the stresses on volume element for point A and point B. (10%)
 - (b) Determine the principal stresses and maximum shear stress at point A. (8%)
 - (c) Plot Mohr's circle to express the stress state at point A and indicate the results of (b) on the Mohr's circle. (7%)

Figure 2

國立中正大學 108 學年度碩士班招生考試試題

科目名稱:材料力學

本科目共2頁第2頁

系所組別:機械工程學系-甲組

- 4. A beam is subjected to the load shown in Figure 3. The Young's modulus is E and the moment of inertia is I.
 - (a) Determine the equation of the deflection curve of the beam by using discontinuity functions. (13%)
 - (b) Determine the value of a in terms of L by using moment-area theorems so that the slope at A is equal to zero. (12%)

Figure 3