國立中正大學 108 學年度碩士班招生考試 試題

[第1節]

系所組別	電機工程學系-電力與電能處理甲組
科目名稱	控制系統

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6.試題須隨試卷繳還。

國立中正大學 108 學年度碩士班招生考試試題

科目名稱:控制系統 系所組別:電機工程學系-電力與電能處理甲組 本科目共1頁 第1頁

1. (20%) Design a PI controller $(K(s) = K_p + \frac{K_i}{s})$ for the system shown in the following figure such that the steady-state error with a step input is zero, the system is critically damped, and the natural undamped frequency is 4 rad/s.

2. (20%) The transfer function of a unity-feedback control system is

$$G(s) = \frac{100K}{s(s+10)(5s+10)}$$

- (a) Find the value of K so that the gain margin of the system is 20 dB. (10%)
- (b) Find the value of K so that the phase margin of the system is 45° . (10%)
- 3. (20%) Construct the root locus and the Nyquist plot for a unity-feedback control system with $K \ge 0$

$$G(s) = \frac{K}{(s+5)^3}$$

4. (20%) Determine the condition on b_1 , b_2 , c_1 , and c_2 , so that the following system is controllable and observable.

$$\frac{dx(t)}{dt} = \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix} x(t) + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} c_1 & c_2 \end{bmatrix} x(t)$$

5. (20%) A system is described by the differential equation:

$$\frac{d^{3}y(t)}{dt^{3}} + 3\frac{d^{2}y(t)}{dt^{2}} + 3\frac{dy(t)}{dt} + y(t) = r(t)$$

Let the state variables be defined as $x_1 = y$, $x_2 = dy/dt$, $x_3 = d^2y/dt^2$. (a) Check the stability of the system. (b) Find the state-transition matrix $\phi(t)$. (10%)