類組:電機類 科目:電力系統(3008)

共一頁第一頁

※請在答案卷內作答

- For the given wind generating system shown in Fig. 1, the synchronous generator (SG) is adopted, answer the following questions: (30%)
 - (一)、(簡答題) Describe the differences in synchronous reactance between a salient-pole and a non-salient pole synchronous generators. (5%)
 - (二)、(計算題) If the three-phase load currents are balanced with $i_a(t) = \sqrt{2} \cdot 10 \sin(377t) + \sqrt{2} \cdot 5 \sin(3 \times 377t)$ (A): (8%)
 - 1. Find the rms value of $i_a(t)$; (4%)
 - 2. Find $i_a(t) + i_b(t) + i_c(t) \cdot (4\%)$
 - (三)、(計算題) If the wind generator output rms line voltage at a specific speed is $V_{LL} = 200 \, \text{V}$, the AC-DC converter is chosen to be the diode rectifier, and all components are ideal, find the DC-link average voltage of v_d . (6%)
 - (四)、(計算題) For a single-phase transformer rated as 220V/60Hz, if the frequency is changed to 50Hz, find the voltage to maintain the rated frequency in the transformer core; (6%)
 - (五)、(簡答題) Draw the equivalent circuit of a practical single-phase transformer. (5%)

二、(計算題) A salient-pole generator without dampers is rated 20 MVA, 13.8 kV and has a direct-axis subtransient reactance of 0.25 per unit. The negative- and zero-sequence reactances are, respectively, 0.35 and 0.10 per unit. The neutral of the generator is solidly grounded. With the generator operating unloaded at rated voltage with $E_{an}=1.0 \ge 0^{\circ}$ per unit, a single line-to-ground fault occurs at the machine terminals, which then have per-unit voltages to ground,

$$V_a = 0$$
, $V_b = 1.013 \angle -102.25$ °, $V_c = 1.013 \angle 102.25$ °

Determine the subtransient current in the generator and the line-to-line voltages for subtransient conditions due to the fault. (14%)

- 三、(計算題) In the single-phase interface for a bidirectional power flow shown in Fig. 2, v_s =240 V (rms) at 60 Hz and L_s = 2.5 mH. Neglect all losses and assume that the switch-mode converter is pulse-width modulated in its linear range. The converter is controlled such that it is either in phase or out of phase with v_s . Calculate the minimum value of the DC bus voltage V_d if the power flow through the converter is 2 kW (16%)
 - (-) rom the grid to the DC side; and (8%)
 - (-) from the DC to the grid. (8%)

類組:電機類 科目:電力系統(3008)

共二頁第二頁

※請在答案卷內作答

- Consider the one-line diagram shown in Fig. 3. The voltage phasor at Bus I is V_i , The complex power generated from Generator i and the complex power consumed at bus i are S_{Gi} and S_{Di} respectively. The admittance between Bus i and Bus i+1 is $y_{i,i+1}=j0$. 1 i=1, 2. (15%)
 - (一)、(計算題) Find the Admittance matrix Y. (6%)
 - (二)、(簡答題)Write down the algorithm for Newton's method for solving power flow equations if Sc2=S c3=0. Specify known and unknown variables. (9%)

- 五、(計算題) The fuel-cost curves of two generators are given as follows: $F_1(P_{GI}) = 900 + 45P_{GI} + 0.01P_{GI}^2$; $F_2(P_{G2}) = 2500 + 40$ $P_{G2} + 0.003P_{G2}^2$. The total load to be supplies is 750MW. Use the optimal dispatch rule to find the output of each generator if line losses are neglected. (10%)
- Assume a round-rotor synchronous generator with the terminal voltage magnitude V_a and the synchronous reactance X_s delivering power to an infinite bus through a transmission line with reactance X_L . The voltage of the infinite bus is $1.0 \angle 0^0$. The power angle δ during transients is described by the so-called swing equation: (15%)

$$M \frac{d^2}{dt^2} \delta + D \delta + P_G (\delta) = P_M$$

where M is the machine inertia, $P_G(\delta)$ is the electrical power output, D is damping, and P_M is the mechanical power output.

- (一)、(計算題) Express $P_G(\delta)$ in terms of V_a , X_s , and X_L . (5%)
- (二)、(簡答題) Does this system have multiple equilibrium points? How to identify their stability. (5%)
- (三)、(簡答題) Illustrate how to the phase trajectory from the potential energy curve to derive the equal-area stability criterion for determining the critical clearing time (CCT) under some fault conditions. (5%)