| 考試科目 | 統計學 | 所 別 | 經濟學系 | 考試時間 | 3月6日(六)第四節 | |------|-----|-----|------|------|------------| | | | | 2/6/ | | | 1. A random sample of size n, Y_1, Y_2, \ldots, Y_n , is taken from the pdf $$f_Y(y; \theta_o) = cy\theta_o^2, \ 0 \le y \le \frac{1}{\theta_o},$$ where c is a constant and θ_o is the unknown parameter of interest. Let $\hat{\theta}_{mm}$ denote the Method of Moments estimator for θ_o , and $\hat{\theta}_{ml}$ the Maximum Likelihood estimator for θ_o . - (a) Find $\hat{\theta}_{mm}$ and $\hat{\theta}_{ml}$. (5%) - (b) Is $\hat{\theta}_{ml}$ unbiased? (5%) - (c) Show the Cramér-Rao lower bound in this case. (5%) - (d) Is it possible that the variance of an unbiased estimator is less than the derived Cramér-Rao lower bound in (c)? Why or Why not? (5%) - (e) Is $\hat{\theta}_{mm}$ a sufficient estimator for θ_o ? Why or Why not? (5%) - (f) Is $\hat{\theta}_{ml}$ a consistent estimator for θ_0 ? Why or Why not? (5%) - 2. Let X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m be independent random samples from normal distributions with mean μ_X and μ_Y and standard derivations σ_X and σ_Y , respectively. - (a) If σ_X and σ_Y are known, derive a $100(1-\alpha)\%$ confidence interval for $\mu_X \mu_Y$. (5%) - (b) For testing H_0 ; $\sigma_X^2 = \sigma_Y^2$ versus $H_1 : \sigma_X^2 \neq \sigma_Y^2$, - (i) Derive the likelihood ratio test statistic in detail. (5%) - (ii) Explain how to implement the likelihood ratio test given the significance level α . (5%) - 3. Show the "memoryless property" of the geometric random variable X. (5%) 試 科 目統計學 別經濟學系 考試時間 3月6日(六)第四節 216 4. In the model $y_t = \alpha + \beta x_t + e_t$, with x_t non-stochastic. Assume that $E(e_i) = 0$ and $E(e_i^2) = \sigma_0^2$. Giving the following sample moments: $$\sum_{t=1}^{10} y_t = 8, \ \sum_{t=1}^{10} x_t = 40, \ \sum_{t=1}^{10} y_t^2 = 26, \ \sum_{t=1}^{10} x_t^2 = 200, \ \sum_{t=1}^{10} x_t y_t = 20.$$ Assume that this model holds for $x_{11} = 10$ and $x_{12} = 12$. - (a) Calculate the best linear unbiased predictor of y_{11} and y_{12} . (5%) - (b) Estimate the standard error of your forecast in (a). (10%) - (c) If the realized values for y_{11} and y_{12} are 0.5 and 0.6 respectively, test the null hypothesis that $H_0: E(e_{11}) = 0$ and $H_0: E(e_{12}) = 0$ at the 5% level. State additional assumption you need to carry the test. (15%) - 5. Let e_0, e_1, \dots, e_T be a sequence of independent and identically distributed $N(0, \sigma_0^2)$ random variables for some σ_0^2 . Assume that $$y_t = \alpha_0 + \beta_0 e_{t-1} + e_t, \ t = 1, \dots, T,$$ for some α_0 and β_0 . - (a) Please derive the variance of y_t . (5%) - (b) Please derive the autocovariances, $cov(y_T, y_{T-k}), k = 1, 2, \dots, T-1.$ (5%) - 6. Assume that $y_t = \beta_1 x_{t1} + \beta_2 x_{t2} + u_t$, $E(u_t) = 0$, $E(u_t^2) = \sigma^2$, $E(u_t u_s) = 0$. All variables have zero mean. If β_1 is estimated from the regression of y on x_1 with x_2 omitted, show that the resulting estimate is biased but has smaller variance than the estimate with x_2 included. (10%)