編號: 114

國立成功大學 108 學年度碩士班招生考試試題

系 所:工程科學系

考試科目:電磁學

考試日期:0224, 節次:2

第1頁,共1頁

 Field classification. (20%) (a) Give a concrete example of a solenoidal and irrotational field in electromagnetics. (5%) (b) Give a concrete example of a field that is solenoidal but not irrotational in electromagnetics. (5%) (c) Give a concrete example of a field that is irrotational but not solenoidal in electromagnetics. (5%)
(a) Give a concrete example of a solenoidal and irrotational field in electromagnetics. (5%) (b) Give a concrete example of a field that is solenoidal but not irrotational in electromagnetics. (5%)
(b) Give a concrete example of a field that is solenoidal but not irrotational in electromagnetics. (5%)
(d) Give a concrete example of a field that is neither solenoidal nor irrotational in electromagnetics. (5%)
·
2. What is a magnetic dipole? Define magnetic dipole moment. Draw a two-dimensional graph of the magnetic
flux lines of a magnetic dipole. (25%)
3. Given a h by h square conducting loop that is placed in a time-varying magnetic field $\mathbf{B} = \mathbf{a}_x B_0 \cos(wt)$,
where B_0 and w are constants. The normal of the loop initially makes an angle β with a_x . Find the induced emf
in the loop when the loop rotates with an angular velocity w about the y-axis. (25%)
 4. Given a long, straight conducting wire (with radius a and conductivity σ) that carries a direct current I. (30%) (a) Find the Poynting vector at the surface of the wire. (15%)
(b) Verify Poynting's theorem. (15%)
· · · · · · · · · · · · · · · · · · ·
,